Using Energy Wisely # **Increasing Energy Conservation and Efficiency** The Department of Energy has installed two low-sulfur light bulbs as a test at its Forrestal Building headquarters in Washington, D.C. The two golf ball-sized bulbs, like those on the opposite page, are at each end of a 240-foot, 10-inch-wide reflective plastic "light pipe." U.S. DEPARTMENTOF ENERGY nergy efficiency is the ability to use less energy to produce the same amount of lighting, heating, transportation, and other energy services. For a family or business, conserving energy means lower energy bills. For the country as a whole, greater energy efficiency helps us make the most of U.S. energy resources, reduces energy shortages, lowers our reliance on energy imports, mitigates the impact of high energy prices, and reduces pollution. Improvements in efficiency can be particularly effective in reducing energy demand when energy is most expensive. Conservation and energy efficiency are important elements of a sound energy policy. Improved energy efficiency is the result of many decisions, including those of individual consumers; manufacturers of cars and appliances; home builders; and state, federal, and local government officials. The federal government can promote energy efficiency and conservation by including the dissemination of timely and accurate information regarding the energy use of consumers' purchases, setting standards for more energy efficient products, and encouraging industry to develop more efficient products. The federal government can also promote energy efficiency and conservation through programs like the Energy Star program, and search for more innovative technologies that improve efficiency and conservation through research and development. Since 1973, the U.S. economy has grown nearly five times faster than energy use (126 percent versus 26 percent). Had Americans continued to use energy as intensively as in 1970, the U.S. would have consumed about 177 quadrillion Btus of energy last year, compared to about 99 quadrillion Btus actually consumed. #### **British Thermal Unit (Btu)** A British thermal unit is the amount of heat required to raise the temperature of one pound of water one degree Fahrenheit at sea level. Put another way, it is approximately the same amount of energy contained in a wooden match head. Figure 4-1 # New Refrigerator-Freezers are Using Less Energy Consumption per Unit for New Shipments Over the last thirty years, the energy efficiency of refrigerator-freezer appliances has increased by approximately 70 percent. Sources: AHAM 2000 Major Home Industry Fact Book and BTS appliance standard. # Improving Efficiency through Innovative Technologies One measure of energy efficiency is energy intensity—the amount of energy it takes to produce a dollar of gross domestic product (GDP). While about half of the long-term decline in energy intensity can be attributed to changes in the economy, especially the shift from manufacturing to services, the other half reflects improved energy efficiency. Gains in energy efficiency over the last three decades were built on a combination of technological improvements, better management practices, and learning to put these technologies and practices to their best use in automobiles. homes, offices, factories, and farms, In many areas the results have been quite impressive. New home refrigerators use about one-third of the electricity they used in 1972 (Figure 4-1). Compact fluorescent lights use about 25 percent of the electricity of the incandescent bulbs they replace. Automobiles use roughly 60 percent of the gasoline they did in 1972 per mile driven. These individual technological improvements have resulted in significant reductions in energy use (Figure 4-2). Several new and innovative technolo- Figure 4-2 The U.S. Economy Has Become More Energy Efficient The amount of energy used by the United States in relation to its economic output has steadily declined since the early 1970s. Source: U.S. Department of Energy, Energy Information Administration. gies offer expanded opportunities to improve our energy efficiency. For example, advanced sensors and controls enable more efficient operation of buildings and factories, and allow equipment and lights to be turned off or dimmed when not in use. Hybrid vehicles use power electronics and battery storage to get more out of every gallon of gasoline consumed, and provide the ability to double vehicle mileage. Cogeneration of electricity and heat and combined heat and power allow for the productive use of much of the waste heat from electricity production, which accounts for about two-thirds of the energy used to produce electricity. # District Energy St. Paul— A Combined Heat and Power Plant District Energy St. Paul, Inc., is a combined heat and power plant that can operate on natural gas, oil, or clean-burning coal that is mixed with wood chips. These wood wastes come from downed trees, trimmings, and branches. District Energy has been able to keep its rates stable because it is able to rely on a diverse fuel supply. District Energy serves about 75 percent of all building space in the city. Nearly 150 large buildings and 3,200 residential units use the system. It is the largest system of its kind in the nation. #### **Recommendation:** ★ The NEPD Group recommends that the President direct the Secretary of Energy to conduct a review of current funding and historic performance of energy efficiency research and development programs in light of the recommendations of this report. Based on this review, the Secretary of Energy is then directed to propose appropriate funding of those research and development programs that are performance-based and are modeled as public-private partnerships. #### **Consumer Choices** The two most important factors in consumers' decisions about purchasing an energy efficient product are price and the life of the product. When energy prices are high, consumers tend to weigh energy efficiency more heavily. Unless consumers are informed about the price of energy, they may not have the incentive to select the most energy efficient product. Consumers do not receive timely signals about rising electricity costs in order to make adjustments to their energy use and efficiency. When consumers' peak costs are averaged with off-peak costs, the higher cost of peak electricity supplies is masked. As a result, consumers may not recognize the benefits of investing in technologies that best target peak consumption. Some energy efficiency improvements are easiest and most cost effective to undertake when first building new factories, cars, equipment, appliances, and buildings. Some energy-using equipment, like computers, are used for only a few years before being replaced. Other equipment is used from five to twenty years, such as home appliances, home electronics, and lighting systems. Some capital stock, such as buildings and boilers, can last a half a century or more. The average car now lasts fourteen years, and newer cars have even more longevity. Vehicle efficiency improvements require significant technological changes. Development of new-car production models requires at least three to four years, which limits the rate at which new technologies can enter the market. Making fundamental changes, such as switching to the use of a fuel cell, would take even longer. Once those new vehicles are in the showroom, it then takes several more years before they constitute any sizable percentage of total vehicles. In a typical U.S. home, appliances are responsible for about 20 percent of the energy bills. Refrigerators, freezers, clothes washers, dryers, dishwashers, and ranges and ovens are the primary energy-using appliances in most households. Taking steps to save energy while using these appliances, and replacing old inefficient appli- ances with modern ones can save money. The federal government established a mandatory program in the 1970s requiring that certain types of new appliances bear a label to help consumers compare the energy efficiency of various products. Under this program, all refrigerators, freezers, clothes washers, and dishwashers are sold with yellow Energy Guide labels to indicate their energy efficiency. These labels provide an estimated annual operating cost of the appliance, and also indicate the cost of operating the models with the highest annual operating cost and the lowest annual operating cost. By comparing a model's annual operating cost with the operating cost of the most efficient model, you can compare their efficiencies. This labeling program ensures that consumers have the information they need to make the right decisions when they purchase major home appliances. However, Energy Guide labels are not currently required for some products, such as kitchen ranges, microwave ovens, clothes dryers, on-demand water heaters, portable space heaters, and lights. The federal government not only ensures consumers have information on the energy efficiency of major home appliances. It also promotes the most energy efficient products through the Energy Star program, a joint program run by the Department of Energy and the Environmental Protection Some efficiency improvements are easiest and most cost-effective to undertake when first building new factories, cars, equipment, appliances and buildings. U.S. Department of Energy, National Renewable Energy Laboratory Agency. Energy Star is only awarded to appliances that significantly exceed minimum energy efficiency standards. The Energy Star program does not extend to all products. Energy efficiency would be further promoted if the Energy Star program were expanded to a broader range of products. #### **Recommendation:** - ★ The NEPD Group recommends that the President direct the Secretary of Energy to promote greater energy efficiency. - Expand the Energy Star program beyond office buildings to include schools, retail buildings, health care facilities, and homes. - Extend the Energy Star labeling program to additional products, ap- - pliances, and services. - Strengthen Department of Energy public education programs relating to energy efficiency. Energy efficiency can also be improved by the establishment of minimum energy efficiency standards. Congress enacted legislation in 1987 and 1988 to establish minimum energy efficiency standards for many major appliances. These standards apply to manufacturers, not consumers. Appliance manufacturers must produce products that meet the minimum level of energy efficiency. These rules do not affect the marketing of products manufactured before the standards went into effect, and any products made beforehand can be sold. The new standards will stimulate energy savings that benefit the consumer, and reduce fossil fuel consumption, thus reducing air emissions. These laws established minimum energy efficiency standards for many appliances, including refrigerators, refrigeratorfreezers, freezers, room air conditioners, fluorescent lamp ballasts, and incandescent reflector lamps, clothes dryers, clothes washers, dishwashers, kitchen ranges, and ovens, pool heaters, and water heaters. The Energy Policy Act of 1992 added standards for fluorescent and incandescent reflector lamps, plumbing products, electric motors, and commercial water heaters, and heating, ventilation, and air conditioning systems. Under current law, the Department of Energy can raise the minimum energy efficiency standards for these appliances if certain criteria are met, such as cost, technological feasibility, and the impact on competition among appliance manufacturers. In addition, the Department can set energy efficiency standards for appliances not covered by these laws. #### **Recommendation:** ★ The NEPD Group recommends that the President direct the Secretary of Energy to take steps to improve the energy efficiency of appliances. In April 2001, the Sustainable Buildings Industry Council showcased a netzero-energy home featuring passive solar design strategies, an integrated photovoltaic system, domestic solar hot water, high-efficiency lights and appliances, and a host of sustainable, marketready components and systems. SUSTAINABLE BUILDINGS INDUSTRY COUNCIL - Support appliance standards program for covered products, setting higher standards where technologically feasible and economically justified. - Expand the scope of the appliance standard program, setting standards for additional appliances where technologically feasible and economically justified. # **Energy Efficiency Government Agencies** As the largest energy consumer in the nation, the U.S. government's cost- and energy-saving opportunity is enormous. In 1999, the government consumed nearly 1.1 percent of all U.S. energy and spent nearly \$8 billion for its vehicles, operations, and its nearly 500,000 buildings. The federal government has reduced its energy use in buildings by about 30 percent from 1990 levels, largely by installing energy efficient technologies (Figure 4-3). It has reduced its energy use for vehicles and equipment by 35 percent. Some of these improvements are attributable to the Department of Energy, whose Federal Energy Management Program helps government agencies reduce their energy and water use, manage their utility costs, and promote renewable energy. #### **Recommendations:** - ★ The NEPD Group recommends that the President direct heads of executive departments and agencies to take appropriate actions to conserve energy use at their facilities to the maximum extent consistent with the effective discharge of public responsibilities. Agencies located in regions where electricity shortages are possible should conserve especially during periods of peak demand. - Agencies should report to the President, through the Secretary of Energy, within 30 days of the conservation actions taken. State and local governments have unique opportunities for energy savings in schools, transportation, state buildings, and building codes. For example, the Texas School Energy Management Program could save school districts as much as \$100 million in energy costs every year by helping school districts evaluate their energy needs and resources. Similarly, Wisconsin's Energy Initiative is working with utilities to make basic changes to public buildings. By installing new lighting fixtures and taking other steps, Wisconsin estimates that it will save \$60 million in state spending on energy over ten years. #### **Residential and Commercial Buildings** There are significant opportunities to improve the energy efficiency of buildings and homes through technologies and better practices. For existing homes, immediate options for improving efficiency include reducing air infiltration with caulking and weather stripping, installing modern thermostats, sealing ductwork, and adding insulation. These steps can reduce the 40 percent share of residential energy bills that Figure 4-3 The U.S. Government is Reducing Its Energy Consumption During the 1990s, energy use in federal buildings decreased by about 30 percent. Source: U.S. Department of Energy, Energy Information Administration. PULTE HOMES ## **Building America—Pulte Homes** Pulte Homes Southwest Division has used technical assistance from the Department of Energy's Building America program to create what one residential expert calls "the best production house in the world," which won the 2001 National Association of Home Builders' Energy Value Award. In Tucson, Phoenix, and Las Vegas, Pulte Homes has worked with the Department of Energy to redesign the energy features of its basic models. Using advanced insulation techniques, highly efficient equipment and windows, and right-sized heating and cooling systems, the homes look the same, but perform so well they use half the energy for heating and cooling at virtually no increase in construction costs. The whole building/systems engineering approach used in the Building America program allows builders to add more insulation and more efficient windows while reducing the size of the heating and cooling equipment. The trade-off means no added cost to the builder, better value for the buyer, reduced electric load for the utility, and improved affordability. go toward heating and cooling. Additional savings are possible when efficient appliances are purchased or major home renovations are undertaken. Installing a new, more efficient gas furnace can save up to 20 percent annually on natural gas. New buildings offer the greatest energy efficiency opportunities and can be designed to be both more comfortable and more efficient, cutting heating and cooling costs by close to 50 percent. In commercial buildings, typically the quickest, most cost effective way to increase energy efficiency is to replace the lighting systems. Sensors help to avoid 24-hour operation of lights and equipment that are only used for a portion of the day. As with homes, advances in windows, heating and air conditioning systems, overall building designs, and equipment and appliances present significant energy saving opportunities. Many families and businesses can face obstacles to realizing energy cost reductions. #### **Insufficient Information** Monthly energy bills generally report only total electricity or natural gas used, leaving families and businesses unsure about which energy services are most responsible for their energy use, and which investments could best help them reduce their costs. In addition, consumers may be unsure about the credibility of the energy-saving claims of individual manufacturers, salesmen, and designers. This incomplete information causes imperfections in the marketplace that hinder purchases of efficient technologies that would actually save families and businesses money. ### Lack of Availability Frequently, the most energy efficient products cost more and are not widely available, especially in smaller communities. Builders who would like to construct more efficient homes and businesses face the same problem at the wholesale level. For example, to keep costs down, builders are less likely to install top-of-the-line, highly efficient products. The less expensive and generally less efficient products are heavily stocked and deeply discounted due to volume ordering. The decisions made about the energy efficiency of buildings and homes are not usually made by the consumer who will ultimately pay the energy bills. The incentive is for the builders to choose the material that poses the least cost to the builder, which is not necessarily the most energy efficient choice. #### Lack of Automation People often walk out of their offices and homes with the lights on and the air conditioner running. Turning off unused appliances, electronics, and lights is not always easy. Lack of automation (e.g., daylight sensors) means that conservation mostly depends on people turning off switches. Some appliances and electronics, such as stereos, video tape players, and televisions, continue to use electricity even after they are turned off. #### **Higher Initial Costs** Efficient products often cost more than less efficient versions, especially when they are first introduced to the market. Unless consumers can verify the resulting savings, they may be reluctant to pay the additional costs. Businesses that adopt labeling programs that spell out energy savings may be more successful in selling a more efficient, yet initially more expensive product. Higher initial costs can be particularly difficult for the purchaser or builder of a new home or office building. ## **Industry and Agriculture** Six industries consume three-quarters of all industrial energy: lumber and paper; chemicals; petroleum refining; primary metals; food processing; and stone, clay, and glass. Improved energy efficiency in these energy-intensive industries yields even larger improvements in overall productivity, product quality, safety, and pollution prevention. Manufacturing companies generally obtain their largest savings from improved efficiency of motors (motors account for 54 percent of electricity use in manufacturing) and from improved steam and hot-water systems. Many companies can reduce energy needs further by cogenerating their electricity and heat for steam. Energy use for U.S. agriculture grew during the 1960s and 1970s, peaking in 1978. High energy prices during the 1970s and early 1980s caused many farmers to find ways to reduce their energy costs, such as by switching from gasoline-powered to more fuel-efficient diesel-powered engines, adopting conservation tillage practices, shifting to larger multiprocessor machines, and using energy saving methods for drying and irrigating crops. These measures helped farmers reduce their energy use by 41 percent from 1978 to 1998, while agricultural output grew by about 40 percent over the same period. Farmers can reap additional energy savings as they replace old machinery with more energy efficient equipment. Furthermore, farmers can adopt more advanced practices, such as precision farming, that optimize the use of machines, chemicals, and fertilizers to achieve energy savings. New seed varieties can also reduce energy-intensive chemical requirements. Despite the opportunity for increased energy efficiency, the industrial and agricultural sectors face several obstacles. Because many manufacturing and farming operations are highly specialized, they need specific information on energy-saving opportunities to effectively respond to energy price signals and supply problems. High energy prices during the 1970s and early 1980s caused many farmers to find ways to reduce their energy costs, such as by switching from gasoline-powered to more fuel efficient dieselpowered engines and by adopting conservation tillage practices. ### **Cogeneration** In 1998, Malden Mills Industries, a textile manufacturer employing 2,300 workers in Lawrence, Massachusetts, installed a state-of-the-art combined heat and power (CHP) facility. The system uses two 4.3 MW industrial gas turbines, retrofitted with ceramic combustion liners, that were developed as part of the Department of Energy's Advanced Turbine Systems program, and that enable higher operating temperatures and lower emissions. The CHP system saves Malden Mills more than \$1 million annually. The liners have accumulated more than 9.500 hours of successful operation and have cut emissions of nitrogen oxides and carbon monoxide to less than 15 parts per million. In order for manufacturing or agriculture to switch to more efficient energy products and practices, significant costs are incurred due to production delays, waste and spoilage, and labor costs. As a result, manufacturers and farmers tend to use readily available and reliable equipment when upgrading, instead of untested, newer products and approaches. Because of their large needs for both heat and electricity, businesses find combined heat and power (CHP) systems particularly attractive. However, replacing old, inefficient boilers with highly efficient CHP systems may add a number of new regulatory requirements (such as air permits), but does not offer the same tax depreciation incentives the tax code grants to power plants. #### **Recommendations:** - ★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with the Congress on legislation to encourage increased energy efficiency through combined heat and power (CHP) projects by shortening the depreciation life for CHP projects or providing an investment tax credit. - ★ The NEPD Group recommends that the President direct the Administrator of the Environmental Protection Agency (EPA) to work with local and state governments to promote the use of well-designed CHP and other clean power generation at brownfield sites, consistent with the local communities' interests. EPA will also work to clarify liability issues if they are raised at a particular site. - ★ The NEPD Group recommends that the President direct the EPA Administrator to promote CHP through flexibility in environmental permitting. Conservation can be improved by car pooling, telecommuting, increasing public transit choices, and pricing highway use during periods of peak demand. #### **Transportation** Transportation plays a key role in a growing U.S. economy, comprising 16 percent of GDP in 1998, 10.5 percent of total employment, and 27 percent of total U.S. energy consumption. Trucks and automobiles account for over three-fourths of the sector's petroleum use, with the remainder attributable to rail, ship, air, and pipeline systems. Mass transit ridership has increased by 21 percent since 1996. Automobiles today use roughly 60 percent of the gasoline they did in 1972 per mile driven, due in part to new technology, such as better engine and design controls, improved transmission, weight reduction, and improved aerodynamics. Despite the adoption of more efficient transportation technologies, average fuel economy for passenger vehicles has remained relatively flat for ten years and is, in fact, at a twenty-year low, in large part due to the growth and popularity of low-fuel-economy pickup trucks, vans, and sport utility vehicles (Figure 4-4). ### **Recommendation:** - ★ The NEPD Group recommends that the President direct the Secretary of Transportation to: - Review and provide recommendations on establishing Corporate Average Fuel Economy (CAFE) standards with due consideration of the National Academy of Sciences study to be released in July 2001. Responsibly crafted CAFE standards should increase efficiency without negatively impacting the U.S. automotive industry. The determination of future fuel economy standards must therefore be addressed analytically and based on sound science. - Consider passenger safety, economic concerns, and disparate impact on the U.S. versus foreign fleet of automobiles. - Look at other market-based approaches to increasing the national average fuel economy of new motor vehicles. Opportunities for reducing oil demand in the transportation sector include increasing conservation, vehicle efficiency, and alternative fuels. Conservation can be improved by car pooling, telecommuting, and increasing transit choices. For example, an increase in the average fuel economy of the on-road vehicle fleet by three miles per gallon would save one million barrels of oil a day, or about half of the global shortfall between supply and demand that triggered the oil price increases since 1998. In addition, fuel conservation can be further improved by technologies to reduce congestion. A recent analysis indicates that the fuel economy of a typical automobile could be enhanced by 60 percent by increasing engine and transmission efficiency and reducing vehicle mass by about 15 percent. Several promising efficiency technologies are being presented to the U.S. market. For example, some automobile manufacturers have already introduced hybrid vehicles, and others have announced that they will introduce hybrid vehicles within the next several years. Advanced lightweight materials offer up to 6 percent improvement in mileage for each 10 percent reduction in body weight. Although promising, it may be many years before hybrids become a substantial part of the automotive fleet. #### **Recommendations:** - ★ The NEPD Group recommends that the President direct the Secretary of Transportation to review and promote congestion mitigation technologies and strategies and to work with the Congress on legislation to implement these strategies. - ★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress on legislation to increase energy efficiency with a tax credit for fuel-efficient vehicles. The NEPD Group recommends that a temporary, efficiencybased income tax credit be available for purchase of new hybrid or fuel cell vehicles between 2002 and 2007. #### **Higher Initial Production Costs** Because of the large economies of scale in automobile manufacturing, new technologies with limited early production runs often enter the market at higher initial costs. In this highly competitive international market, higher initial production costs can be a significant impediment to the introduction of new technologies. Unless U.S. automakers can remain competitive with their overseas counterparts, it is unlikely they will invest in new, more efficient technologies. Vehicle efficiency technologies, such as advanced engines, fuel cells, and cutting-edge electronic drive-train technologies, will become widely available only when component costs are reduced or demand is increased. # **Hybrid Vehicles** The engine of a conventional gasoline vehicle is typically sized for the small amount of time the driver spends accelerating to enter the freeway, to pass another car, or to climb a hill. Most of the time it operates at less than 20 percent efficiency. An attractive alternative is to use a hybrid system that allows the engine to operate at peak efficiency, and get a boost from a battery when entering the freeway or climbing a hill. Not only does this system allow improved performance from a smaller engine, but the energy usually lost in stopping the car can be recovered and stored in the battery. What does this mean to the average American? Significantly improved fuel economy and reduced emissions. Figure 4-4 Fuel Efficiency of Light Vehicles Has Remained Flat (Miles per Gallon) 5 0 1980 New Cars Combined New Trucks Despite the adoption of more efficient transportation technologies, U.S. average fuel economy has been flat for 10 years. In large part, this is due to the growth of low-fuel-economy pickup trucks, vans, and sport utility vehicles. Source: U.S. Department of Energy, Energy Information Administration. # **Summary of Recommendations** Using Energy Wisely: Increasing Energy Conservation and Efficiency - ★ The NEPD Group recommends that the President direct the Office of Science and Technology Policy and the President's Council of Advisors on Science and Technology to review and make recommendations on using the nation's energy resources more efficiently. - ★ The NEPD Group recommends that the President direct the Secretary of Energy to conduct a review of current funding and historic performance of energy efficiency research and development programs in light of the recommendations of this report. Based on this review, the Secretary of Energy is then directed to propose appropriate funding of those research and development programs that are performance-based and are modeled as public-private partnerships. - ★ The NEPD Group recommends that the President direct the Secretary of Energy to promote greater energy efficiency. - Expand the Energy Star program beyond office buildings to include schools, retail buildings, health care facilities, and homes. - Extend the Energy Star labeling program to additional products, appliances, and services. - Strengthen Department of Energy public education programs relating to energy efficiency. - **★** The NEPD Group recommends that the President direct the Secretary of Energy to improve the energy efficiency of appliances. - Support the appliance standards program for covered products, setting higher standards where technologically feasible and economically justified. - Expand the scope of the appliance standards program, setting standards for additional appliances where technologically feasible and economically justified. - ★ The NEPD Group recommends that the President direct heads of executive departments and agencies to take appropriate actions to conserve energy use at their facilities to the maximum extent consistent with the effective discharge of public responsibilities. Agencies located in regions where electricity shortages are possible should conserve especially during periods of peak demand. Agencies should report to the President, through the Secretary of Energy, within 30 days on the conservation actions taken. - ★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress to encourage increased energy efficiency through combined heat and power (CHP) projects by shortening the depreciation life for CHP projects or providing an investment tax credit. - ★ The NEPD Group recommends that the President direct the Administrator of the Environmental Protection Agency (EPA) to work with local and state governments to promote the use of well-designed CHP and other clean power generation at brownfields sites, consistent with the local communities' interests. EPA will also work to clarify liability issues if they are raised at a particular site. - ★ The NEPD Group recommends that the President direct the EPA Administrator to promote CHP through flexibility in environmental permitting. - ★ The NEPD Group recommends that the President direct the Secretary of Transportation to: - Review and provide recommendations on establishing Corporate Average Fuel Economy (CAFE) standards with due consideration of the National Academy of Sciences study to be released in July 2001. Responsibly - crafted CAFE standards should increase efficiency without negatively impacting the U.S. automotive industry. The determination of future fuel economy standards must therefore be addressed analytically and based on sound science. - Consider passenger safety, economic concerns, and disparate impact on the U.S. versus foreign fleet of automobiles - Look at other market-based approaches to increasing the national average fuel economy of new motor vehicles. - ★ The new NEPD Group recommends that the President direct the Secretary of Transportation to review and promote congestion mitigation technologies and strategies and work with Congress on legislation to implement these strategies. - ★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress on legislation to increase energy efficiency with a tax credit for fuel-efficient vehicles. The NEPD Group recommends that a temporary, efficiency-based income tax credit be available for purchase of new hybrid fuel cell vehicles between 2002 and 2007. - ★ The NEPD Group recommends that the President direct all agencies to use technological advances to better protect our environment. - The Administration remains committed to investing in Intelligent Transportation Systems (ITS) and encourages the private sector to invest in ITS applications. This Department of Transportation (DOT) program funds the development of improved transportation infrastructure that will reduce congestion, such as traveler information/navigation systems, freeway management, and electronic toll collection. ITS applications reduce fuel associated with travel. - The Administration remains committed to the DOT's fuel-cell-powered transit bus program, authored by the Transportation Equity Act for the 21st Century (TEA-21). This program demonstrates the viability of fuel-cell power plants for transit bus applications. - The Administration remains committed to the Clean Buses program. TEA-21 establishes a new clean fuel formula grant program, which provides an opportunity to accelerate the introduction of advanced bus propulsion technologies into the mainstream of the nation's transit fleet. - ★ The NEPD Group recommends that the President direct the EPA and DOT to develop ways to reduce demand for petroleum transportation fuels by working with the trucking industry to establish a program to reduce emissions and fuel consumption from long-haul trucks at truck stops by implementing alternatives to idling, such as electrification and auxiliary power units at truck stops along interstate highways. EPA and DOT will develop partnership agreements with trucking fleets, truck stops, and manufacturers of idle-reducing technologies (*e.g.*, portable auxiliary packs, electrification) to install and use low-emission-idling technologies. - ★ The NEPD Group recommends that the President direct the Secretary of Energy to establish a national priority for improving energy efficiency. The priority would be to improve the energy intensity of the U.S. economy as measured by the amount of energy required for each dollar of economic productivity. This increased efficiency should be pursued through the combined efforts of industry, consumers, and federal, state, and local governments. - ★ The NEPD Group recommends that the President direct the EPA Administrator to develop and implement a strategy to increase public awareness of the sizable savings that energy efficiency offers to homeowners across the country. Typical homeowners can save about 30 percent (about \$400) a year on their home energy bill by using Energy Star-labeled products.