

A Review of The Building Separation Requirements of the New Zealand Building Code Acceptable Solutions

James M W Clarke

Fire Engineering Research Report 99/2

March 1999

SCHOOL OF ENGINEERING, UNIVERSITY OF CANTERBURY PRIVATE BAG 4800, CHRISTCHURCH, NEW ZEALAND

A REVIEW OF THE BUILDING SEPARATION REQUIREMENTS OF THE NEW ZEALAND BUILDING CODE ACCEPTABLE SOLUTIONS

BY

James M W Clarke

Supervised by

Dr Andrew H Buchanan

Fire Engineering Research Report 99/2
March 1999

This report was presented as a project report as part of the M.E. (Fire) degree at the University of Canterbury

School of Engineering
University of Canterbury
Private Bag 4800
Christchurch, New Zealand

Phone 643 364-2250 Fax 643 364-2758

ACKNOWLEDGEMENTS

I would like to thank Pat Roddick, Information Services Librarian at the University of Canterbury Engineering School Library, for her invaluable efforts to obtain research material for this project.

Thanks is also due to Cliff Barnett and Marc Janssens for providing additional research material and general support.

The production of this report would have been impossible without the assistance of Anna Masters and Janice Fong, who translated my dictation and deciphered my scrawl.

The main acknowledgements must go to my wife, Jane, and my sons, David and Jonathan, who had to make do with a part-time father for much longer than was reasonable.

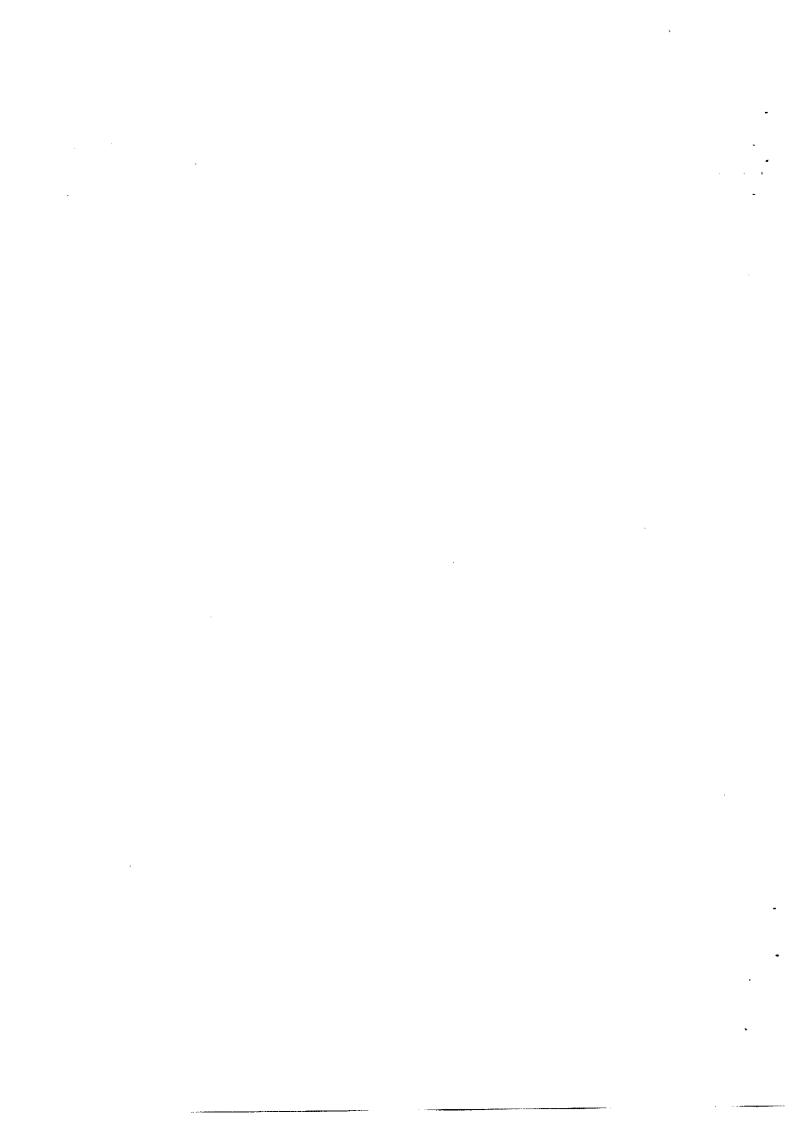
ABSTRACT

This report investigates the parameters that influence the boundary separation tables of the present New Zealand Building Code Acceptable Solutions. From an extensive literature review of theoretical and experimental research papers, revisions are proposed to some of the parameters such as emitted radiation flame projection; limiting distance and piloted ignition flux. Using these revised parameters new boundary separation tables are presented and compared to the existing tables. The new tables result in larger boundary separation (but similar separations between buildings) and potential areas for future research are suggested.

TABLE OF CONTENTS

Table	wledge of Cor		i ii iii - iv
List of List of	-		v - vi
LIST OF	i abie	S	vii
CHAP		: INTRODUCTION	1
	1.1	PREAMBLE	1
	1.2	LEGISLATIVE BACKGROUND	1
	1.3	ACCEPTABLE SOLUTION C3/AS1 - SPREAD OF FIRE	3
	1.4	DESIGN PARAMETERS USED IN C3/AS1	9
	1.5	BOUNDARY SEPARATION REQUIREMENTS OF OTHER	
	4.0	COUNTRIES	11
	1.6	IS THERE A PROBLEM WITH EXISTING SEPARATION	40
		DISTANCES?	16
CHAP	TER 2	: EMITTED RADIATION	27
	2.1	REVIEW METHOD	27
	2.2	RADIATION THEORY	28
	2.3	ACCEPTABLE SOLUTIONS METHOD - MARGARET LAW	29
	2.4	STANDARD FIRE CURVES	35
	2.5	THEORETICAL AND EXPERIMENTAL WORK BY KAWAGOE	39
	2.6	SWEDISH FIRE CURVES	45
	2.7	SIMPLIFIED MATHEMATICAL EXPRESSION FOR COMPARTM	ENT
		TEMPERATURE BY LIE	50
	2.8	BABRAUSKAS'S APPROXIMATE METHOD FOR PREDICTING	
		COMPARTMENT TEMPERATURES	54
	2.9	EUROCODE PARAMETRIC FIRE	59
	2.10	BARNETT'S BFD CURVES	62
	2.11	COMPUTER MODELLING OF COMPARTMENT FIRES	65
•	2.12	RECOMMENDED METHOD OF DETERMINING EMITTED	
		RADIATION FOR THE ACCEPTABLE SOLUTIONS	68
СНАР	TED 2	: HEAT RADIATION TRANSFER	73
UIIAI	3.1	FLAME PROJECTION	73 73
	3.1	EMISSIVITY	
		CONFIGURATION FACTORS	80 80
		WIND	81
		TRANSMISSIVITY	83
	3.6	FIRE SERVICE INTERVENTION	
	3.0	FIRE SERVICE INTERVENTION	83
CHAP	TER 4	: SPECIFICATION OF CRITICAL SEPARATION DISTANCES	85
	4.1	MIRROR IMAGE CONCEPT	85
	4.2	EXAMPLE OF MIRROR IMAGE CONCEPT RESULTING	- -
		IN A DANGEROUS SITUATION	85

			NG DISTANCE CONCEPT MMENDED CHANGE	87 88
	5.1 5.2 5.3	WHAT IGNITION EXTER IGNITION	CAL RECEIVED RADIATION IS DAMAGE? ON DUE TO RADIANT HEATING RNAL CLADDINGS TO BE CONSIDERED ON OF TIMBER CLADDING OSED NEW CRITICAL RADIATION LIMITS	89 89 90 91 92 100
	6.1 6.2 6.3	REQUIEMITTE RADIA BUILDE	CLUSIONS IREMENTS FOR CHANGE ED RADIATION ITION TRANSFER ING SEPARATIONS IVED RADIATION	101 101 101 102 102 102
CHAP	7.1 7.2 7.3 7.4	GENER EMITT FLAME FIRE S BUILD VALUE PROPE	ED RADIATION LEVELS E PROJECTION SERVICE INTERVENTION SING SEPARATIONS ES FOR CRITICAL RADIATION OSED SEPARATION TABLES NTIAL AREAS FOR FURTHER CONSIDERATION OR	105 105 105 105 106 106 106
REFE	RENC	ES		113
APPE	NDIX	A:	VERIFICATION OF BOUNDARY SEPARATION TABLES ACCEPTABLE SOLUTIONS	OF THE
APPE	ENDIX	В:	COMPARISON OF METHODS TO DETERMINE COMPARTEMPERATURE	RTMENT
APPE	ENDIX	C:	FLAME PROJECTION CALCULATIONS	•
APPE	ENDIX	D:	COMPARISON OF MIRROR IMAGE AND LIMITING DIS CONCEPTS FOR BOUNDARY SEPARATION	TANCE
APPE	ENDIX	E:	BOUNDARY SEPARATIONS USING THE PROPOSED MODIFIED PARAMETERS	


LIST OF FIGURES

1.1	Acceptable Solution Purpose Groups	4
1.2	Acceptable Solution Building Separations	7
1.3	Burnt out Manurewa house	21
1.4	Melted PVC guttering	21
1.5	Deformed guttering and downpipes	22
1.6	Burnt out Howick house	22
1.7	Partially melted PVC guttering	23
1.8	Cracked Windows	23
1.9	Remains of burnt out Devonport House	24
1.10	Extensive charring of neighbouring house	24
1.11	Damage to neighbour	25
1.12	Close up of damage	25
1.13	Most remote damage	26
1.14	Blistered paintwork and deformed gutter	26
2.1	Typical Fire Duration Curve	27
2.2	Maximum Temperature and Air Flow (from Law)	31
2.3	Peak Radiation Intensities vs Fire Load Density	33
2.4	Compartment Temperatures	35
2.5	Standard Furnace Time Temperature Curves	37
2.6	Values for ISO Temperature and Corresponding Radiation	38
2.7	Burning Rate vs Ventilation	39
2.8	Kawagoe's Estimated Fire Temperature Curves	43
2.9	Kawagoe's Nomograph for Compartment Temperatures	44
2.10	Swedish Experimental Time Temperature Curves	46
2.11	Swedish Time Temperature Charts	48
2.12	Typical Swedish Time Temperature Curves	49
2.13	Lie's Time Temperature Curves	51
2.14	Comparison of Time Temperature for Light Walled Compartment	52
2.15	Characteristic Temperature Curves from Lie	53
2.16	Comparison of Experimental and Analytical Curves	53
2.17	Effect of Equivalence Ratio	56
2.18	Effect of Wall Steady State Losses	56
2.19	Effect of Wall Transient Losses	57
2.20	Effect of Window Height	57
2.21	Effect of Combustion Efficiency	58
2.22	Comparison of COMPF2 and Approximate Method	59
2.23	Typical Time Temperature Curves for Eurocode Parametric Fires	60
2.24	Comparison of EC1 Fire Curve with Experimental Results	61
2.25	·	62
2.26	Comparison of Swedish Curves and BFD Curves	63
2.27	Comparison of Experimental Results with BFD Curves	64
2.28	Time Temperature Curves obtained from COMPF2	66
2.29	FASTLite Generated Fire Curves	68
3.1	Radiation from Windows and Flames from Law's Tests	75
3.2	Radiation from Flames	77
33		78

4.1	Mirror Image Concept	86
4.2	Limiting Distance Concept	88
5.1	Minimum Intensity of Radiation for Piloted Ignition	94
5.2	Relationship between Piloted Ignition and Moisture Content	95
5.3	Effect of Moisture Content on Ignition (Atreya)	96
5.4	Piloted Ignition of Radiation Pine (Janssens)	98
5.5	Heat Flux and Ignition Times for Varying Moisture Content	99
7.1	Comparison of Boundary Separations using Existing and	
	Proposed Tables	109
B.1	Kawagoe's Nomograph	B10
B.2	Comparison of Compartment Temperatures	B14
C.1	Mean Beam Lengths for Various Gas Body Shapes	C3
D.1	Boundary Separations for Mirror Image Concept	D1
D.2	Proportions of Unrated Wall Area for Limiting Distance Concept	D2

LIST OF TABLES

1.1	Purpose Group Design FLED	. 6
1.2	Australian Radiant Heat Limits	14
1.3	Fire Load Classification for NFPA 80A	15
1.4	Numbers of Exposure Fires in New Zealand	16
2.1	ASTM E119 and ISO 834 Fire Temperature Values	36
2.2	Classification of Buildings by Opening Factor (Kawagoe)	41
2.3	Compartment Types for Swedish Curves	47
2.4	BFD Parameters for Fire Curves	65
2.5	Proposed Emitted Radiation Values	71
5.1	Time to Ignition for 50 kW/m² Flux	92
5.2	Results of Experiments on the effect of Moisture Content	93
5.3	Parameters for Janssens Thermal Model	97
5.4	Parameters for Radiata Pine for varying Moisture Content	97
7.1	Boundary Separation Parameters	107
7.2	Example Boundary and Building Separations	107
7.3	Boundary Separations for 3m High Unrated Walls	108
A.1	Boundary Separations from Acceptable Solutions Tables and Specific Design	A4
B .1	Insulation Factor K	В3
B.2	Compartment Temperatures from Alternative Methods	B14
C.1	Emission Co-efficients	C2
E.1	Comparison of Boundary separations	E1
E.2	Proposed Boundary Separation Tables for FHC1	E6
E.3	Proposed Boundary Separation Tables for FHC2	E10
E.4	Proposed Boundary Separation Tables for FHC3	E14
E.5	Proposed Boundary Separation Tables for FHC4	E18
E.6	Existing Boundary Separation Tables for FHC 1 & 2	E22
E .7	Existing Boundary Separation Tables for FHC 3 & 4	E26

CHAPTER 1: INTRODUCTION

1.1 PREAMBLE

This project sets out to review the design parameters used for the building separation requirements of the present New Zealand Building Code Acceptable Solutions and compares them with those used by other countries and with the results of scientific research and experiments in each of the relevant areas.

The effects of changing the various parameters based on the research results is evaluated using the radiation module of the FIRECALC computer programme (CSIRO 1993) and suggested changes to the Acceptable Solutions are presented.

1.2 LEGISLATIVE BACKGROUND

Prior to 1992, the fire design aspects of building construction in New Zealand were governed by NZS 1900: Chapter 5:" Fire Resisting Construction and Means of Egress" (SANZ 1988). This Standard was a prescriptive code that set out strict requirements for fire design based on the use of a proposed building and the form of construction to be used. The requirements in Chapter 5 were, to some extent, based on empirical standards laid down by interested parties such as insurance companies and in most cases these standards dated back many years.

For some time, the building community in New Zealand had considered that the prescriptive basis of the existing New Zealand Standards, including Chapter 5, led in some cases to overly conservative and hence expensive construction requirements and stifled the use of new and innovative building methods and materials. After a number of years of lobbying, the Building Industry Commission was set up by the New Zealand Government and, on the basis of the work done

by that Commission, the Building Act 1991 was enacted in December 1991 (NZ Government 1991). The Act's description of itself was:

"An Act to consolidate and reform the law relating to building and to provide for better regulation and control of building."

Under Part VI of the Act, Sections 48 to 50 set up the legislative framework for the National Building Code.

In June 1992, the Building Regulations 1992 (NZ Government 1992) were promulgated. The First Schedule of these Regulations was entitled "The Building Code" and set out the performance requirements for all aspects of building construction. The requirements for each aspect were set out in a specific clause with each clause broken down into "Objective", "Functional Requirements" and "Performance". The requirements relating to building separation are included in Clause C3 - Spread of Fire. The particular sections relating to fire spread to other properties are as set out below:

Objective:

C3.1(c) The objective of this provision is to protect adjacent household units and other property from the effects of fire.

Functional Requirement:

C3.2(c) Buildings shall be provided with safeguards against fire spread so that adjacent household units and other property are protected from damage.

Performance:

C3.3.5

External walls and roofs shall have resistance to the spread of fire, appropriate to the fire load within the building and to the proximity of other household units and other property.

As a performance based code, these clauses set out what is to be done, not how to do it. In order that the Territorial Authorities (TAs) (Authorities Having Jurisdiction), designers and builders could have examples of materials, components and construction methods which, if used, would result in compliance with the Building Code, a series of Acceptable Solutions (BIA 1992) were prepared governing each specific clause of the requirements. It should be noted that these Acceptable Solutions are only one method of complying with the requirements of the relevant clauses of the Building Code. Under the requirements of the Building Act the Territorial Authorities are required to accept a design which complies fully with the methods set out in the Acceptable Solutions. The Acceptable Solutions also provide guidelines by which compliance of alternative solutions can be measured.

1.3 ACCEPTABLE SOLUTION C3/AS1 - SPREAD OF FIRE

This Acceptable Solution, together with the associated Appendices A, B and C of the Fire Safety Annex, sets out methods by which the performance requirements of Clause C3 can be achieved. The sections of C3/AS1 and the Appendices that have an influence on the requirements for building separation are as set out below:-

(a) Building Usage and Fire Load

As shown in Figure 1.1 which is extracted from Appendix A of the Annex, the various likely uses of buildings are divided into purpose groups.

Table A1:

Purpose groups

Paragraph A2.1 Fire Some examples Description of Purpose hazard intended use of group category the building space CROWD ACTIVITIES Cinemas when classed as CS, art galleries, auditoria. bowling alleys, churches, clubs (non-residential), community halls, court rooms, dance halls, day care centres, gymnasia, lecture halls, museums, For occupied spaces. eating places (excluding kitchens), tavems, enclosed grandstands. CS applies to occupant 1 indoor swimming pools. loads up to 100 CS or CL and CL to occupant Cinemas when classed as CL, schools, colleges and loads exceeding 100 tertiary institutions, libraries (up to 2.4 m high book storage), nightclubs, restaurants and eating places with cooking facilities, (non-residential) theatre stages, opera houses, television studios 2 (with audience). 3 Libraries (over 2.4 m high book storage). Open grandstands, roofed but unenclosed grandstand, Spaces for viewing open air 1 uncovered fixed seating. activities (does not include spaces below a grandstand). 2 Exhibition halls, retail shops. СМ Spaces for displaying, or selling retail goods, wares or merchandise. Supermarkets or other stores with bulk storage/display 4 over 3.0 m high. **SLEEPING ACTIVITIES** Hospitals, care institutions for the aged, children, SC Spaces in which principal users because of age, mental or people with disabilities. physical limitations require special care or treatment. Care institutions, for the aged or children, with Spaces in which principal SD physical restraint or detention. users are restrained or liberties are restricted. Hospital with physical restraint. 1 detention quarters in a police station, prison. Motels, hotels, hostels, boarding houses, clubs, Spaces providing transient SA (residential), boarding schools, domitories. accommodation, or where limited 1 community care institutions. assistance or care is provided for principal users. Multi-unit dwellings or flats, apartments, and includes SR Attached and multi-unit household units attached to the same or other residential dwellings. purpose groups, such as caretakers' flats, and residential accommodation above a shop. Dwellings, houses, being household units, or suites SH Detached dwellings where in purpose group SA, separated from each other people live as a single by distance. Detached dwellings may include attached household or family. self-contained suites such as granny flats when occupied by a member of the same family, and garages whether detached or part of the same building and are primarily for storage of the occupants'

Amd 1

Dec 93

Building Industry Authority

A17

vehicles, tools and garden implements.

1 December 1995

Figure 1.1: Acceptable Solution Purpose Groups

Table A	1: Purpose groups (Paragraph A2.1	ooma,	
Purpose group	Description of intended use of the building space	Some examples	Fire hazard category
WORKING	G BUSINESS OR STORAG	E ACTIVITIES	
WL	Spaces used for working, business or storage - light fire hazard	Manufacturing, processing or storage of non- combustible materials, or materials having a slow heat release rate, cool stores, covered cattle yards, wineries, grading, storage or packing of horticultural products, wet meat processing. Banks, hairdressing shops, beauty parlours, personal or professional services, dental offices, laundry (self-service), medical offices, business or other offices, police stations (without detention quarters), radio stations, television studios (no audience), small tool and appliance rental and service, telephone exchanges, dry meat processing.	2
WM	Spaces used for working, business or storage - medium fire hazard.	Manufacturing and processing of combustible materials not otherwise listed, bulk storage up to 3.0 m high.	3
wo	Spaces used for working, business or storage - high fire hazard.	Areas involving sufficient quantities of highly combustible and flammable or explosive materials which because of their inherent characteristics constitute a special fire hazard, including: bulk plants for flammable liquids or gases, bulk storage warehouses for flammable substances, chemical manufacturing or processing plants, distilleries, feed mills, flour mills, lacquer factories, mattress factories, paint and vamish factories rubber processing plants, spray painting operations, waste paper processing plants, plastics manufacturing, bulk storage of combustible materials over 3 m high.	4
INTERMIT	TENT ACTIVITIES		
E	Exitways on escape routes.	Protected path, safe path.	1
IA	Spaces for intermittent occupation or providing intermittently used support functions - light fire hazard.	Garages, carports, enclosed comdors, unstaffed kitchens or laundries, lift shafts, locker rooms, linen rooms, open balconies, staircases (within the open path), toilets and amenities, and service rooms incorporating machinery or equipment not using solid-fuel, gas or petroleum products as an energy source.	1
ID	Spaces for intermittent occupation or providing intermittently used support functions - medium fire hazard.	Maintenance workshops and service rooms incorporating machinery or equipment using solid-fuel, gas or petroleum products as an energy source.	3

NOTE:

IE. IA and ID spaces are not considered occupiable areas when determining occupant load.

Service rooms are spaces designed to accommodate any of the following: boiler/plant equipment, furnaces, incinerators, refuse, caretaking/cleaning equipment, airconditioning, heating, plumbing or electrical equipment, pipes, lift/escalator machine rooms, or similar services.

Each of the purpose groups is specified as having a particular fire hazard category. This category is used to classify the likely impact that a fully developed fire in that purpose group would have on the building and its surroundings. The fire hazard categories are defined in terms of the fire load energy density (total fire load divided by the fire cell floor area) as shown in Table 1.1 below. It is noted in the appendix that FLED is only one factor affecting the fire severity in a building.

Other factors that may require consideration include ventilation, surface area to mass ratio of the fuel and the rate of burning of the fuel. In allocating the fire hazard categories to the various purpose groups, some consideration of these other aspects was also taken.

Fire Hazard Category	Range of FLED (MJ/m²)	Design Value of FLED (MJ/m²)
1	0 to 500	400
2	501 - 1000	800
3	1001 - 1500	1200
4	> 1500	Specific design

Table 1.1: Purpose Group Design FLED

(b) Building Separation

Based on the fire hazard categories detailed in Table 1.1, the building separations for various configurations are tabulated in a series of tables given in Appendix C, "Calculation of the Acceptable Unprotected Area in External Walls". A copy of a typical table from Appendix C is given in Figure 1.2.

Table C3: Permitted unprotected areas in unsprinklered buildings Method 4: Enclosing rectangles Paragraph C5.2.1 Width of Minimum acceptable distance (m) between external wall and enclosing relevant boundary for fire hazard categories 3 and 4 and purpose groups SC and SD. Figures in brackets are for fire hazard categories 1 and 2 excluding purpose groups SC and SD. rectangle (m) (Applies to SH only where more than two floors) Percentage of unprotected area in external wall 20 % 30 % 40 % 50 % 60 % 90 % 80 % 100 % Enclosing rectangle 3 m high 1.0 (1.0) 1.5 (1.0) 2.0 (1.0) 2.0 (1.5) 2.5 (1.5) 2.5 (1.5) 2.5 (2.0) 3.0 (2.0) 3.0 (2.0) 1.5 (1.0) 2.0 (1.0) 2.5 (1.5) 3.0 (2.0) 3.0 (2.0) 3.5 (2.0) 3.5 (2.5) 4.0 (2.5) 4.0 (3.0) 9 1.5 (1.0) 2.5 (1.0) 3.0 (1.5) 3.5 (2.0) 4.0 (2.5) 4.0 (2.5) 4.5 (3.0) 5.0 (3.0) 5.0 (3.5) 12 2.0 (1.0) 2.5 (1.5) 3.0 (2.0) 3.5 (2.0) 4.0 (2.5) 4.5 (3.0) 5.5 (3.5) 5.5 (3.5)

Amd 1 Dec '93

	1 ()		J.V (2.0)	3.3 (2.0)	4.V (2.5)	4.5 (3.0)	5.0 (3.0)	5.5 (3.5)	5.5 (3.5)
15	2.0 (1.0)	2.5 (1.5)	3.5 (2.0)	4.0 (2.5)	4.5 (2.5)	5.0 (3.0)	5.5 (3.5)	6.0 (3.5)	6.0 (4.0)
18	2.0 (1.0	2.5 (1.5)	3.5 (2.0)	4.0 (2.5)	5.0 (2.5)	5.0 (3.0)	6.0 (3.5)		
	1 ((1.0)	0.0 (2.0)	4.0 (2.0)	J.0 (2.5)	3.0 (3.0)	0.0 (3.3)	6.5 (4.0)	6.5 (4.0)
21	2.0 (1.0)	3.0 (1.5)	3.5 (2.0)	4.5 (2.5)	5.0 (3.0)	5.5 (3.0)	6.0 (3.5)	6.5 (4.0)	70/45
24	2.0 (1.0)	3.0 (1.5)	3.5 (2.0)	4.5 (2.5)	5.0 (3.0)	5.5 (3.5)	6.0 (3.5)		7.0 (4.5)
27	2.0 (1.0)	3.0 (1.5)	4.0 (2.0)	4.5 (2.5)	5.5 (3.0)			7.0 (4.0)	7.5 (4.5)
	2.5 (1.5)	0.0 (1.0)	4.0 (2.0)	4.5 (2.5)	J.J (J.U)	6.0 (3.5)	6.5 (4.0)	7.0 (4.0)	7.5 (4.5)
30	2.0 (1.0)	3.0 (1.5)	4.0 (2.0)	4.5 (2.5)	5.5 (3.0)	6.0 (3.5)	6.5 (4.0)	7.5 (4.0)	8.0 (4.5)
40	2.0 (1.0)	3.0 (1.5)	4.0 (2.0)	5.0 (2.5)	5.5 (3.0)	6.5 (3.5)	7.0 (4.0)	8.0 (4.0)	8.5 (5.0)
50	2.0 (1.0)	3.0 (1.5)	4.0 (2.0)	5.0 (2.5)	6.0 (3.0)	6.5 (3.5)	7.5 (4.0)	8.0 (4.0)	9.0 (5.0)
	`` `	,	(2.0)	0.0 (2.0)	0.0 (0.0)	0.0 (0.0)	7.5 (4.0)	0.0 (4.0)	9.0 (5.0)
60	2.0 (1.0)	3.0 (1.5)	4.0 (2.0)	5.0 (2.5)	6.0 (3.0)	7.0 (3.5)	7.5 (4.0)	8.5 (4.0)	9.5 (5.0)
80	2.0 (1.0)	3.0 (1.5)	4.0 (2.0)	5.0 (2.5)	6.0 (3.0)	7.0 (3.5)	8.0 (4.0)	9.0 (4.0)	9.5 (5.0)
no limit	2.0 (1.0)	3.0 (1.5)	4.0 (2.0)	5.0 (2.5)	6.0 (3.0)	7.0 (3.5)	8.0 (4.0)	9.0 (4.0)	10.0 (5.0)
·						1.0 (0.0)	0.0 (4.0)	3.0 (4.0)	10.0 (5.0)
Enclosing re	ctangle 6 m h	igh_							
3	1.5 (1.0)	2.0 (1.0)	2.5 (1.5)	3.0 (2.0)	3.0 (2.0)	3.5 (2.0)	3.5 (2.5)	4.0 (2.5)	40(20)
6	2.0 (1.0)	3.0 (1.5)	3.5 (2.0)	4.0 (2.5)	4.5 (3.0)	5.0 (3.0)	5.5 (2.5)		4.0 (3.0)
9	2.5 (1.0)	3.5 (2.0)	4.5 (2.5)	5.0 (3.0)	5.5 (3.5)			5.5 (4.0)	6.0 (4.0)
·	2.5 (1.0)	3.5 (2.0)	4.5 (2.5)	3.0 (3.0)	J.J (J.J)	6.0 (4.0)	6.0 (4.5)	7.0 (4.5)	7.0 (5.0)
12	3.0 (1.5)	4.0 (2.5)	5.0 (3.0)	5.5 (3.5)	6.5 (4.0)	7.0 (4.5)	7.5 (5.0)	8.0 (5.0)	8.5 (5.5)
15	3.0 (1.5)	4.5 (2.5)	5.5 (3.0)	6.0 (4.0)	7.0 (4.5)	7.5 (5.0)	8.0 (5.5)	9.0 (5.5)	9.0 (6.0)
18	3.5 (1.5)	4.5 (2.5)	5.5 (3.5)	6.5 (4.0)	7.5 (4.5)	8.0 (5.0)	9.0 (5.5)	9.5 (6.0)	10.0 (6.5)
		(2)	0.0 (0.0)	0.5 (4.5)	7.5 (4.5)	0.0 (0.0)	3.0 (3.3)	3.3 (0.0)	10.0 (6.5)
21	3.5 (1.5)	5.0 (2.5)	6.0 (3.5)	7.0 (4.0)	8.0 (5.0)	9.0 (5.5)	9.5 (6.0)	10.0 (6.5)	10.5 (7.0)
24	3.5 (1.5)	5.0 (2.5)	6.0 (3.5)	7.0 (4.5)	8.5 (5.0)	9.5 (5.5)	10.0 (6.0)		
27	3.5 (1.5)	5.0 (2.5)	6.5 (3.5)	7.5 (4.5)	8.5 (5.0)			10.5 (7.0)	11.0 (7.0)
	0.5 (1.5)	3.0 (2.5)	0.5 (3.5)	7.5 (4.5)	8.5 (J.U)	9.5 (6.0)	10.5 (6.5)	11.0 (7.0)	12.0 (7.5)
30	3.5 (1.5)	5.0 (2.5)	6.5 (3.5)	8.0 (4.5)	9.0 (5.0)	10.0 (6.0)	11.0 (6.5)	12.0 (7.0)	12.5 (8.0)
40	3.5 (1.5)	5.5 (2.5)	7.0 (3.5)	8.5 (4.5)	10.0 (5.5)	11.0 (6.5)	12.0 (7.0)	13.0 (8.0)	14.0 (8.5)
50	3.5 (1.5)	5.5 (2.5)	7.5 (3.5)	9.0 (4.5)	10.5 (5.5)	11.5 (6.5)	13.0 (7.5)	14.0 (8.0)	
	2.2 ()	3.0 (2.0)	(0)	5.0 (4.5)		(0.5)	13.0 (7.3)	14.0 (0.0)	15.0 (9.0)
60	3.5 (1.5)	5.5 (2.5)	7.5 (3.5)	9.5 (5.0)	11.0 (5.5)	12.0 (6.5)	13.5 (7.5)	15.0 (8.5)	16.0 (9.5)
80	3.5 (1.5)	6.0 (2.5)	7.5 (3.5)	9.5 (5.0)	11.5 (6.0)	13.0 (7.0)	14.5 (7.5)	16.0 (8.5)	17.5 (9.5)
100	3.5 (1.5)	6.0 (2.5)	8.0 (3.5)	10.0 (5.0)	12.0 (6.0)	13.5 (7.0)	15.0 (8.0)	16.5 (8.5)	18.0 (10.0)
	,			10.0 (0.0)	-2.5 (0.0)	15.5 (7.6)	10.0 (0.0)	10.5 (0.5)	10.0 (10.0)
120	3.5 (1:5)	6.0 (2.5)	8.0 (3.5)	10.0 (5.0)	12.0 (6.0)	14.0 (7.0)	15.5 (8.0)	17.0 (8.5)	19.0 (10.0)
120	3.5 (1.5)		8.0 (3.5)	10.0 (5.0)	12.0 (6.0)	14.0 (7.0)	16.0 (8.0)	18.0 (8.5)	-5.5 (-5.6)

It is noted in the comments to Appendix C that the methods used to produce the tables are based on BRE Report BR 187: 1991 "External Fire Spread: Building Separation and Boundary Distances" (Read 1991). One difference between the Acceptable Solution separation tables and the BRE report is the inclusion of the care and detention categories of the sleeping purpose groups in the requirements for FHC 3 and 4. As these purpose groups would not have any greater fire load than other residential uses and as the Building Code performance requirement is to protect other property, it does not seem logical to require higher boundary separations for these purpose groups. However, as there is a greater life safety risk with these purpose groups, the working group responsible for this area may have considered that it was necessary to include some owner's property protection against fires in adjacent properties by requiring greater separations or larger proportions of external wall fire rating.

(c) Detached Dwellings

It is important to note that the Building Code does not exclude detached dwellings from the requirements to protect other property. However, when the Acceptable Solutions were prepared, a political decision was made that the requirements would not apply to one or two storey detached dwellings (SH Purpose Group). For these buildings the previous requirement to only fire rate external walls which were within 1.0 m of a boundary was allowed to remain. This was in spite of the fact that it was readily acknowledged that with this boundary separation the radiation from a small low cost house fully involved in fire would exceed the limitations set down for other buildings by a factor of at least 3. The reason for this decision was that the Building Code had been vaunted as being the way to reduce costs in the building industry. It was not considered appropriate to impose a major upgrading of requirements, with the attendant increase in costs, in the residential housing area which was the major sector of the industry and the one which affected the public in

an immediate and visible manner. The justification for the decision was that the history of fires in residential areas in New Zealand contained few, if any, examples of fire spread to neighbouring houses. In addition, it was considered that in urban areas where the problem may occur, the Fire Service was likely to respond quickly enough to wet down adjacent houses should this prove necessary. The validity of this justification is reviewed later in this chapter.

1.4 DESIGN PARAMETERS USED IN C3/AS1

In order to produce the tables given in Appendix C, the working group responsible for this section of the Acceptable Solutions had to decide on a number of the design parameters which dictated the radiation which was emitted from the subject building and was received on the neighbouring building. These parameters are outlined below and are then reviewed in detail in subsequent chapters.

1.4.1 Emitted Radiation

In a similar manner to the British Regulations (Department of the Environment 1991), two levels of emitted radiation are considered based on the purpose group contained in the building. For Fire Hazard Categories 1 and 2 an emitted radiation of 84 kW/m² is used. For the higher fire load energy densities associated with Categories 3 and 4 and for the care and detention categories of sleeping purpose groups, an emitted radiation of 168 kW/m² is used.

1.4.2 Flame Projection

No consideration of flame projection is included in the building separation requirements set out in the C3 tables.

1.4.3 Emissivity

On the basis of black body radiation emission, a conservative value of 1.0 is taken for the emissivity of the radiator.

1.4.4 Position of Receiving Building

In order to produce the C3 tables, an assumption was made that the adjacent building would be a mirror image of the building being considered and would therefore be located the same distance on the other side of the relevant boundary as the radiating building. In the definitions of the Acceptable Solutions the relevant boundary is either a property boundary or a notional boundary located between two proposed buildings on the same lot.

1.4.5 Received Radiation

The radiation received on the target building was determined using the configuration factor method described in various heat and mass transfer text books and in the BRE Report BR187 mentioned earlier.

1.4.6 Critical Radiation

To establish the required separation distances a maximum received radiation of 12.6 kW/m² on the receiving building was stipulated.

1.4.7 Verification of C3 Table Results

In order to confirm that the separation distances derived from the C3 tables are in fact based on the parameters given above manual calculations of several cases taken from Figure 1.2 are set out in Appendix A and compared with the results of FIRECALC analyses. The results show that if the above assumptions

are made, the separation distances given in the C3 tables can be duplicated manually allowing for some rounding to give separations in 0.5 m intervals.

1.5 BOUNDARY SEPARATION REQUIREMENTS OF OTHER COUNTRIES

From a review of the literature that was available and personal communication with overseas researchers, it would appear that most countries have prescriptive requirements regarding boundary separations but the background performance requirements which dictate those separations are generally not publicised or well known. The prescriptive requirements vary in complexity, some being similar to the tables of the NZBC Acceptable Solutions while others are just strict distance limitations.

(a) Britain

In Britain the Building Regulations 1991 are based on the same BR 187 Report which was used to produce the NZBC Acceptable Solutions and the tables are exactly the same. In private communications, Margaret Law (Law 1998) indicated that at present it was not considered necessary to revise the tables as the performance parameters used to produce them were considered to be reasonably satisfactory. She commented that, although the value of 12.6 kW/m² was a conservative value for the ignition of timber cladding, the move to PVC external cladding could mean that this value of received radiation was no longer as conservative. She also made the point that in producing the tables it had been assumed that the fire brigade would be available to help protect any exposed within five minutes after callout. This gave some margin of safety since ignition would be expected to occur approximately 10 minutes after the primary fire had become fully developed. In the same communication, Margaret Law advised that in Germany and France there is a blanket five metre minimum spacing between buildings and if any building is closer than this, at least one of the buildings must be fire rated.

(b) Canada

In Canada the National Building Code (NRC 1990) has similar tables to those of the NZBC Acceptable Solutions but the separation distances are somewhat larger. Dr. David Torvi of the National Research Council of Canada (1998) has advised that the received radiation criteria used to produce the tables are the same as the British regulations, but a flame projection distance of 1.2 m has been included and higher emitted radiation values used. These factors were based on the results of full scale fire tests carried out in Canada in 1958 known as the St. Lawrence Burns and reported by Shorter (1960).

As discussed by McGuire (1965), the peak radiation levels that occurred on the leeward side of the buildings during the St. Lawrence Burns were 1680 kW/m² for buildings with combustible interior linings and 840 kW/m² for ones with non-combustible linings. These values were ten times larger than the values that were expected and were thought to be due to the effect of flames emanating from the windows. In re-examining the results, it was noted that the radiation values did not exceed 20% of the peak values until at least 16 minutes after the start of the fire. It was felt that firefighting would have started by this time, so it was justifiable to use lower radiation values.

To achieve a received radiation limit of 12.6 kW/m², it was decided to require configuration factors of 0.07 for normal buildings and 0.035 for buildings expected to burn vigorously. These configuration factors equate to emitted radiation values of 180 kW/m² and 360 kW/m² respectively.

The Canadian Code also has the stipulation that where fire service intervention cannot be guaranteed within 10 minutes, the separation distances given in the tables must be doubled.

(c) Japan

Although copies of the Japanese regulations could not be obtained, Dr. Kazunori Harada of the Building Research Institute, Japanese Ministry of Construction (1998) advised that the regulations were based on an emitted radiation of 100 kW/m² if no detailed information was available, but different values could be used on the basis of established compartment fire models.

The regulations assume an emissivity of 1 for the radiator and do not take into account flame projection. A lower than normal allowable received radiation of 10 kW/m² has been adopted because of the prevalence of thin timber external cladding.

In a recent research paper, Harada et al (1998) also suggested that there should be a limit on the accumulated radiated heat flux at certain distances within the adjacent property in order to account for the time dependency of the compartment temperature. The values suggested were 32,000 (kW/m²)².min at 0.5 m from the boundary and 2,000 (kW/m²)².min at 3.0 m from the boundary.

(d) Australia

The Building Code of Australia 1996 (ABCB 1996) contains tables giving the required boundary separation for various proportions of fire rated walls that are deemed to satisfy the performance requirements of the Code. The verification method by which alternative designs can be checked contains the table shown in Table 1.2.

Location	Heat Flux (kW/m²)		
On boundary	80		
1.0 m from boundary	40		
3.0 m from boundary	20		
6.0 m from boundary	. 10		
Column 1	Column 2		

Table 1.2 Australian Radiant Heat Limits

The requirement of the code to avoid the spread of fire between buildings on adjoining properties is verified when:-

- (i) A burning building will not cause heat flux greater than the values given in Column 2 at locations within the adjacent property set out in Column 1; and
- (ii) When located at the distance from the boundary given in Column 1, a building is capable of withstanding the heat flux given in Column 2.

Enquiries have been made with a number of people involved in the writing of the Australian Code, but the reason for the choice of the particular flux values given above and the parameters that were used in establishing the flux cannot be verified.

(e) America

In America there is no single building code that is used throughout the country, but one of the more commonly used documents is the National Building Code (BOCA 1996). This, like the other codes used in America, is a prescriptive code with no performance criteria or verification methods provided. In the BOCA code boundary separations and exterior wall fire ratings are established by the use of two tables.

The first table sets out the required exterior wall fire ratings at set distances from the boundary for various building uses. Depending on the particular use, the table will specify a fire rating of zero once a certain boundary distance is achieved. The second table gives the maximum area of openings allowed in a fire rated wall depending on the distance to the boundary, with the separation being in bands of 1.5 m width. No allowance for building size is included. Again, it has not been possible to establish the criteria on which the tables are based.

One code which does have some flexibility and provides background data is NFPA 80A (NFPA 1993). This code stipulates a maximum received radiation of 12.6 kW/m², but allows it to be adjusted to suit the exterior cladding material being considered. The boundary separations are given for three different fire loading conditions as shown in Table 1.3, with the corresponding required configuration factors.

Building Classification	Fire Load per Unit Floor Area	Flame Spread Rating of Interior Lining	Configuration Factor
Light	<34 kg/m²	0-25	0.14
Moderate	34-73 kg/m²	26-75	0.07
Severe	>73 kg/m²	>75	0.035

Table 1.3 Fire Load Classification For NFPA 80A

The separation distances include a flame projection distance of $1.5 \, \text{m}$ ($5 \, \text{ft}$). The distances given also contemplate rapid fire service response and the code states that if this cannot be guaranteed, the distances should be increased by a factor of up to 3.

1.6 IS THERE A PROBLEM WITH EXISTING SEPARATION DISTANCES?

The Building Code has been in effect for approximately six years and it is worth reflecting on whether or not the use of the building separations given in the C3 tables has affected the situation regarding spread of fire to adjacent properties.

In the publication "Emergency Incident Statistics" by the New Zealand Fire Service (NZ Fire Service 1998) a wide variety of statistics relating to fires in the period 1993 to 1997 are provided. For spread of fire to adjacent property, which the Fire Service defines as exposure fires, the figures given in Table 1.4 below have been extracted from a larger range of values covering all areas of initial ignition.

Spread of	Spread of Fire	1993	1994	1995	1996	1997
Fire from	to				<u> </u>	
Structure	Structure	61	68	70	102	73
Structure	Vehicle	19	27	26	30	26
Structure	Outside*	38	13	6	10	18
Total Structure "Exposure		118	108	102	142	117
Fires"						<u> </u>
Total Structur	4097	3933	3608	2841	2813	

[&]quot;Outside" includes outside storage, rubbish, grass, scrub or trees.

Table 1.4: Numbers of Exposures Fires in New Zealand

As can be seen from Table 1.4, although exposure fires are a relatively small proportion (3%-5%) of all structural fires, there have been a significant number of exposure fires during the period covered by the statistics. Unfortunately the Fire Service incident reporting system is not capable of breaking these figures down further to evaluate more detailed information such as the age or type of the

buildings involved, the type of damage that occurred nor the cost of remedial work. From discussions with senior fire safety officers in various regions, the general view is that the bulk of the exposure fires relate to residential situations. In addition, the Fire Service's definition of damage includes discoloured or blistered paintwork, distorted PVC guttering and downpipes as well as charred external timber. It should be noted that the received radiation limits used by the Acceptable Solution documents relate to ignition of the target body.

Apart from the figures given above, there are specific areas where various parties have raised concerns.

1.6.1 Residential Situations

Although the Acceptable Solutions did not change the previous requirements relating to boundary separation for detached dwellings, there appear to be more incidents where damage to adjacent houses is occurring. This could be due in part to the increasing pressure on urban land resulting in smaller section sizes and hence smaller separations between houses. As part of the work associated with this project, the author attended a number of house fires at the invitation of the New Zealand Fire Service. In a number of these, adjacent houses had been damaged as the result of the fire even though boundary separations in all cases exceeded the 1.0 m allowed in the Acceptable Solutions.

An example of this was a fire that occurred in a small low cost house in Manurewa, South Auckland. A fire was started in the house as a result of children playing with either matches or a lighter and although all occupants were able to escape safely, the building was extensively damaged by fire as shown in the photograph in Figure 1.3. The Fire Service responded within four minutes to the notification of the fire which they estimate was some 15 minutes after the start of the fire. Upon their arrival the Fire Service commenced attacking the fire as well as wetting down adjacent houses. In spite of this early intervention, damage occurred to two of the adjacent houses as shown in Figures 1.4 and 1.5.

The house involved in the fire was 2.5 m from the adjacent boundary and the smallest boundary separation of a house on another property was 1.5 m, giving a total separation distance of 4 m, twice that allowed by C3/AS1.

Another example was a two storey house under construction in Howick that was destroyed by fire in 1997. The shell of the house was complete and was awaiting a prelining inspection by the TA.

A plumber was brazing an additional connection to a copper pipe in the wall framing and ignited the bitumen impregnated building paper. The fire quickly spread throughout the house and it was almost completely destroyed before the Fire Service could attend. See Figure 1.6. Although the new house was a minimum of 3.5 m from the boundary, radiation from the fire damaged the house on the adjacent property that was 1.5 m from the boundary - a minimum separation of 5 m. The damage consisted of melted PVC downpipes and cracked windows as seen in Figures 1.7 and 1.8.

In a more recent case, a two storey timber house in Devonport, built in the early 1900s, was completely destroyed in a fire. The house had been vacant and had had all of the services disconnected as the developer wished to demolish it, although the Territorial Authority had refused permission as it was a listed building. A fire, of unknown cause, occurred during the night and the Fire Service were alerted by neighbours woken by the noise of breaking windows. The station is located less than a kilometre from the site and the fire trucks were at the scene within three minutes of the alert. By this time the house was fully involved and all the Fire Service could do was attempt to protect adjacent houses, which were in considerable danger. In fact, the cedar weatherboard cladding on an adjacent house ignited just as the Fire Service arrived.

As can be seen in Figures 1.9 to 1.12, the Fire Service were unable to save the house where the fire started but did prevent major damage to the neighbours. The damage that did occur consisted of broken windows, blistered paintwork, melted PVC plumbing and badly charred timber cladding.

The original house was 4.5 m from the boundary and the closest neighbour, being the white house in Figure 1.9, was 2.5 m inside its site.

The much more extensive charring to the house shown in Figure 1.10 was considered to be because of the dark colour of the cedar cladding and the fact that the timber was stained rather than painted. Damage to the white painted neighbouring house is shown in Figures 1.11 and 1.12.

The most remote damage occurred to the house shown in Figure 1.13, which was 31 m away from the fire. The occupants said that at the height of the fire it was too hot for them to stand on the balcony overlooking it. After the fire blistered paintwork, deformed guttering and a cracked window were found on the wall facing the fire, as seen in Figure 1.14.

1.6.2 Commercial and Industrial Situations

Although no statistics are available for exposure fires in these situations, concerns have been expressed by officers of TAs that new buildings designed on the basis of the Acceptable Solutions must be accepted even though there is an existing building on the adjacent property that does not conform to the mirror image assumption for either separation distance or proportion of non fire rated area.

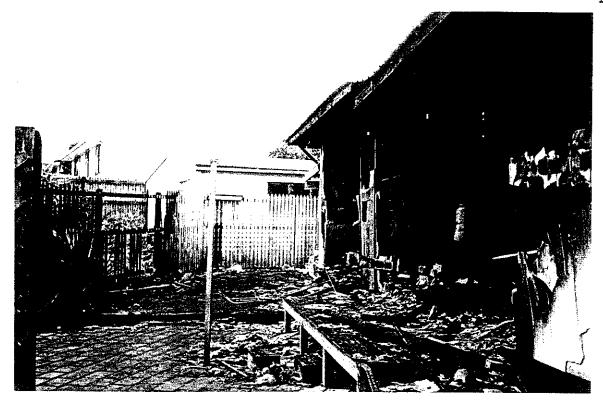


Figure 1.3: Burnt out Manurewa house. Note damage to timber fence.

Figure 1.4: Melted PVC gutter on adjacent house 4m away.

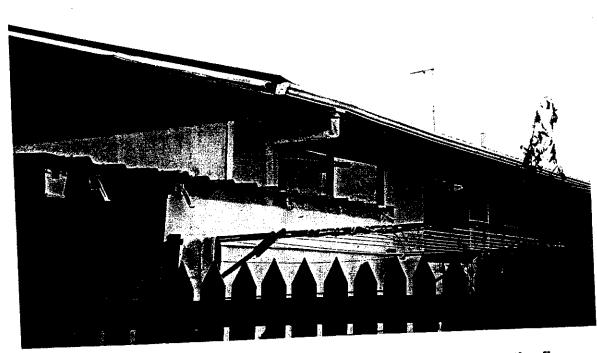


Figure 1.5: Deformed guttering and downpipe 6m away from the fire.

Figure 1.6: Burnt out Howick house.

Figure 1.7: Partially melted PVC gutter 5m from Howick fire.

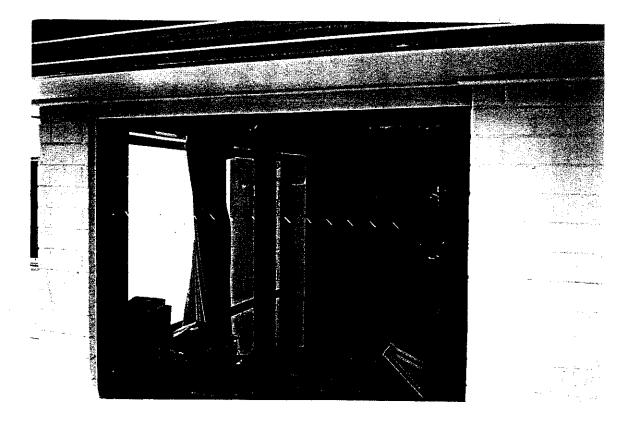


Figure 1.8: Cracked window in house adjacent to Howick fire.

Figure 1.9: Remains of burnt out Devonport house.

Figure 1.10: Extensive charring of neighbouring house. The cedar cladding had started to ignite by the time the Fire Service arrived.

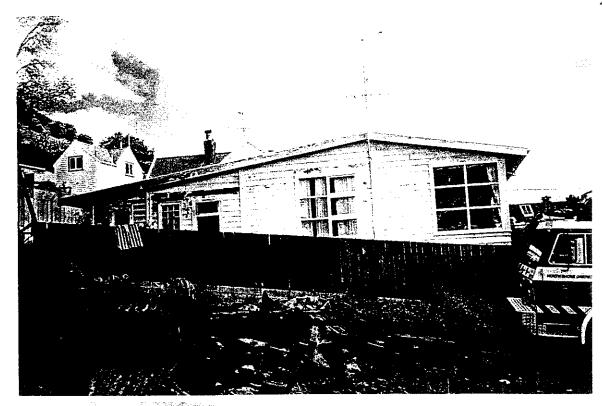


Figure 1.11: Damage to neighbour consisting of broken windows, blistered paintwork and charred timber.

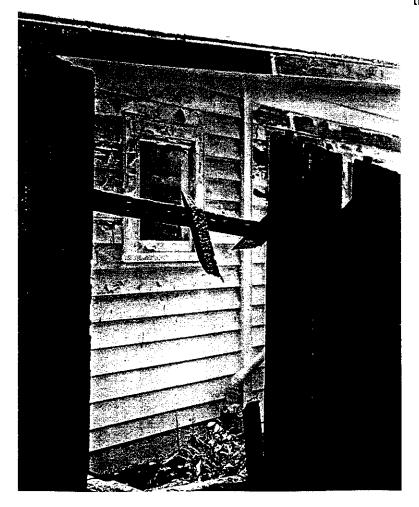


Figure 1.12: Close-up of damage. Note the lack of damage lower down because of the protection from the timber fence.

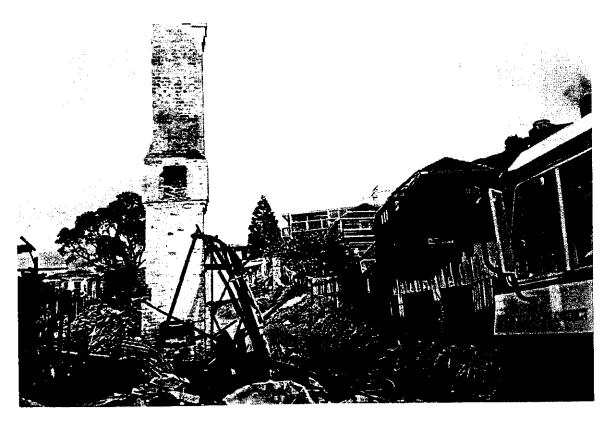


Figure 1.13: Most remote damage was to the house on the ridge at the rear – 31m from the fire.

Figure 1.14: Blistered paintwork and deformed gutter on remote house.

CHAPTER 2: EMITTED RADIATION

2.1 REVIEW METHOD

In this chapter the basis behind the values of emitted radiation used by the Acceptable Solutions will be explained in detail. Other possible methods of determining emitted radiation based on the work of a number of researchers will be reviewed and their relative advantages/disadvantages will be discussed.

It should be noted that in all cases it is assumed that the radiation is being emitted from openings in a wall of a compartment in which a fire is burning in the post flashover phase of the fire duration curve. See Figure 2.1 below.

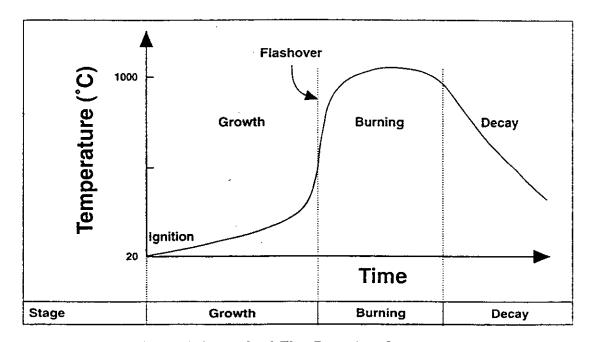


Figure 2.1: Typical Fire Duration Curve

As can be seen from Figure 2.1, the pre flashover growth phase can be an extended period and the compartment temperatures are generally relatively low. Similarly, in the decay phase the compartment temperatures are rapidly reducing from the maximum temperatures achieved during the burning phase and will generally have a much less significant effect.

A number of the more complex methods of determining theoretical time/ temperature curves for compartment fires were produced in order to determine the fire resistance of structural members within or immediately outside the fire compartment. In most case the complexity of the methods has been generated by the need to try to accurately reflect the decay phase of the growth curve. For consideration of the effect of the emitted radiation this area is not as significant and therefore the various complexities involved need not be analysed in detail.

With respect to complexity, it must be borne in mind that the Acceptable Solutions were put in place in order to give people who were not fire engineers a method of achieving the requirements of the New Zealand Building Code. To this end, any method used in the Acceptable Solutions should be reasonably general and simple to apply without the need for extensive computations or theoretical knowledge.

2.2 RADIATION THEORY

In a fire, energy is transferred by three methods - conduction, convection and radiation. In this review it is assumed that the object under consideration is not in contact with the building on fire and therefore will not receive energy by conduction and is also far enough away from the compartment that convection of heat from the hot gases and flames will not occur.

The theory behind heat radiation is given in numerous texts and is defined as the Stefan-Boltzmann Law (Incropera & De Witt, 1990).

 $E_b = \sigma T^4$ Where E_b = Total emissive power of a black body source σ = Stefan-Boltzmann constant (5.67 x 10⁻⁸ W/m².K⁴)

T = Hot body temperature in degrees Kelvin

A black body radiator is the ideal emitter in the sense that no surface can emit more radiation than a black body at the same temperature.

For real radiators the concept of emissivity (ε) must be incorporated in the formula where the emissivity is the ratio of radiation from the real surface compared to that of a black body.

 $E = \varepsilon \sigma T^4$

E = Emissive power of a real source of temperature T

The effect of the emissivity is discussed in further detail in Chapter 3, but it is generally taken as conservative to assume $\varepsilon = 1$. Thus the only variable involved is the temperature of the compartment and as this is raised to the fourth power in the equation any change in T has a significant effect on the emitted radiation.

In considering the radiation from a burning building, the radiator can be taken as either the burning compartment emitting radiation through the unprotected openings such as windows or doors, the radiation from flames projecting out of the unprotected openings or a combination of both. In the following sections the peak compartment temperatures will be considered in detail and the methods proposed by various researchers for evaluating them will be reviewed.

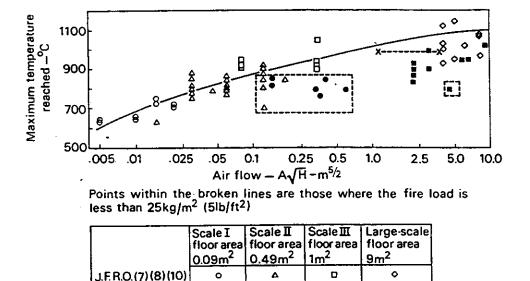
A review of methods of estimating temperatures in compartment fires for the full duration of the fire is given by Walton and Thomas (1995). Reviews of the mathematical model for compartment fires are given by Drysdale (1985) and Quintiere (1995) and it is not proposed to reproduce them in this paper.

2.3 ACCEPTABLE SOLUTIONS METHOD - MARGARET LAW

As noted in Chapter 1, the method used by the Acceptable Solutions to determine building separations is based on BRE Report BR187:1991 "External Fire Spread: Building Separation and Boundary Distances". This report was prepared in support of Approved Document B4 that was part of the Building Regulations for England and Wales (Department of the Environment 1991).

The report is in two parts. Part 1 describes the enclosing rectangle and aggregate notional area methods and these have been copied directly into Appendix C of the Fire Safety Annex of the Acceptable Solutions. The C3 tables of the Fire Safety Annex mentioned earlier, which give the permitted unprotected areas in unsprinklered buildings using the enclosing rectangle method, are a direct copy of Table 1 of this part of BR 187. The report contains some refinements of the method that have not been carried over into the Acceptable Solutions but generally the methods are the same.

Part 2 of the report sets out the basis for the methods described in Part 1 and is a copy of Fire Research Technical Paper No.5 "Heat Radiation from Fires and Building Separations" by Margaret Law (Law 1963). As well as providing the background to Part 1, the paper also describes more sophisticated methods of analysis to provide more accurate answers than those of Part 1. The Law paper describes in detail the reasons for the choice of 12.6 kW/m² (0.3 cal cm²sec¹) as the limiting incident radiation and this is looked at in more detail in Chapter 5 of this paper.


The Law paper then details the derivation of the intensity of radiation from compartment fires used to produce the boundary separation tables.

In this section, Law states that although the temperature and hence the radiation from a fire in a compartment varies with time and that the maximum temperatures attained will be dependent on the type and distribution of the fuel and the geometry of the windows and compartment, it is necessary to make considerable simplifications in order to make workable regulations. She states that her report only provides a typical value of intensity that may be expected from fires in a wide variety of buildings and occupancies.

The temperature of a fire depends on the rate of burning within the compartment and the report divides compartment fires into two types:

- (a) Those in which the ventilation is restricted and the rate of burning depends on the size of the window. Such fires are considered to be ventilation controlled.
- (b) Those in which the window area is comparable to the floor area and therefore the rate of burning depends on the fire load, its surface area and arrangement, not on the window area. Such fires may be said to be fully ventilated or fuel controlled.

For the ventilation controlled fires, Law reviewed the temperatures attained in a number of experiments in England, Sweden and Japan in the middle to late 1950s. For ventilation controlled fires the area of the window opening (A) and its height (H) are important and the value A/H is the most important parameter affecting the rate of burning irrespective of compartment size. Law plotted the maximum temperature achieved in the various experiments against A/H and produced the graph in Figure 2.2.

Swedish test (9) Kawagoe (11) (12)

Figure 2.2: Maximum Temperature and Air Flow (from Law)

The results of the analysis indicated that there was no marked increase in maximum temperature above an A/H value of 8 m^{5/2} and that the temperatures had a limiting value of less than 1,100°C. For simplicity this was considered to be equivalent to a radiation intensity of 4 cal cm⁻² sec⁻¹ (167.4 kW/m²). For values of A/H less than 5 m^{5/2} the restricted ventilation begins to have a significant effect on the compartment temperature. This value would correspond to a window size 1.5 m high x 2.7 m wide, so for smaller compartments with restricted window sizes the compartment temperature could be expected to be significantly lower than the limiting value given above. In addition, the results of the experiments indicated that for compartments with low fire loads the fire does not last long enough for the compartment temperatures to reach the limiting value and hence the radiating intensity is significantly less.

For the fuel controlled fires, Law again used experimental values from tests in Japan and England that were done in the late 1950s and early 1960s. For these tests the burning rate was found to be largely independent of A/H and was approximately proportional to the total amount of fuel. The intensity of radiation gave a better correlation with the rate of burning per unit window area. However, for this type of fire, the window area must be comparable to the floor area so the fire load ratios are nominally taken as being the same. The results of the analyses are shown in Figure 2.3. The graph shows that for fire loads greater than 60 kg/m² (1,000 MJ/m²) a radiation intensity of 4 cal cm² sec¹ (167.2 kW/m²) can be expected. The analyses indicated a number of experiments which had values of fire load per unit floor area of around 25 kg/m² had resulted in peak radiation intensities in the order of 2 cal m² sec² (83.6 kW/m²). This radiation intensity corresponds to a temperature of about 800°C, which is consistent with the values obtained in Figure 2.3 for the lower fire loads.

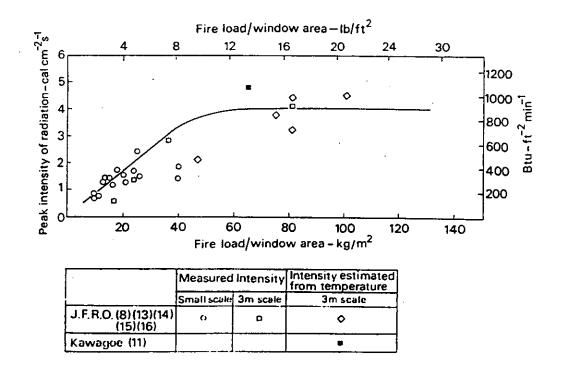


Figure 2.3: Peak Radiation Intensities vs Fire Load Density

Based on her analysis, Law proposed that for devising regulations on space separation a radiation intensity of 167.2 kW/m² (4 cal cm² sec²) should be taken for standard occupancies and a lower value of 83.6 kW/m² (2 cal cm² sec¹) be taken for lower fire loads or restricted window sizes. In the Building Regulations for England and Wales, the lower intensity was deemed to come from residential, office and assembly/recreation buildings. For the New Zealand Building Code Acceptable Solutions, these uses corresponded to Fire Hazard Categories 1 and 2 as described in Chapter 1, so a similar stipulation was made.

In further work for the Joint Fire Research Organisation, Law reviewed experimental work in which direct radiation measurements were taken outside a burning compartment (Law 1968). In the experiments the fire load and the window openings were varied and Law's review indicated that fire load and window area and their relationship to each other had a highly significant effect on the intensity of emitted radiation. The graphical analysis of the experimental results indicated a direct relationship between the intensity of radiation and the rate of burning/window area. A comparison of the maximum compartment

temperature and the maximum intensity of radiation showed that the assumption of a black body radiator in accordance with the Stefan Boltzmann Law was valid. Law concluded that the results verified that the values used as a basis for the Building Regulations were safe, possibly even a little conservative.

The values mentioned above together with the value of 12.6 kW/m² as a critical received radiation (looked at in more detail in Chapter 5 of this paper) have been used as the basis of boundary separation requirements in many countries for the last 30 years. In this time, there have been very few incidences where buildings constructed in accordance with this method have caused significant damage to adjacent buildings. However, with the rise in the use of performance based codes, there has been a move to relook at the matter to see if the approach is overly conservative and hence if any savings can be made in construction costs.

In later work, Margaret Law produced expressions for the maximum compartment temperatures that may be expected for fires in compartments of various sizes with a variety of fire load densities. The work was mainly aimed at determining the fire resistance of structural members within the compartment and is detailed in a Constrado publication "Fire Safety of Bare External Structural Steel" (Law and O'Brien 1981). An extensive analysis of experimental results indicated that it was possible to estimate the maximum fire temperature in a compartment from considerations of fire load, ventilation and compartment dimensions.

The temperature of the fire within the compartment is given by:

```
T_f - T_a = 6000 \ \frac{(1 - e^{-0.10\eta})}{n^{1/2}} (1 - e^{-0.05\psi})
                        = maximum fire temperature °K
where T,
                        = ambient air temperature
                        = floor area m<sup>2</sup>
                        = total enclosure area - window area m²
          A_{\mathsf{T}}
                         = window area m<sup>2</sup>
          A_{w}
                         = fire load density kg/m<sup>2</sup>
          q
                         = fire load = A.F.o
          L
                         = A_T/(A_WH^{\frac{1}{2}})
          η
                         = L/(A_WA_T)^{\frac{1}{2}}
```

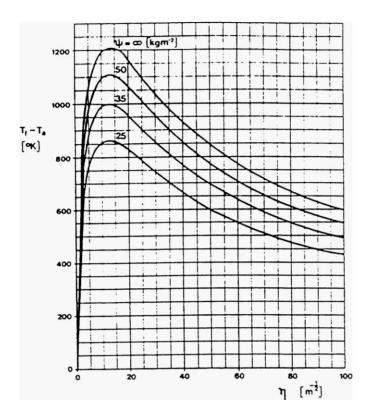


Figure 2.4 below shows the compartment temperatures resulting from the above formula for various values of ω .

Figure 2.4 Compartment Temperatures

The disadvantage of this method is that it requires some degree of computation and also does not take account of effect of different linings within the compartment and only gives one value for the compartment temperature.

2.4 STANDARD FIRE CURVES

In order to determine the fire performance of building elements, most countries rely on full scale fire resistance tests carried out in large furnaces. In order to have standard fire resistance tests that are readily reproducible, standard time temperature curves have been developed which the furnace heating pattern must adhere to. The most common fire test time temperature curves are **ASTM** E I 19 and ISO 834. Most national building codes quote one or other of these specifications in their criteria for establishing fire resistance.

The ISO 834 curve is defined by the equation:-

$$T = 345 \text{ log}$$
, $(8t + 1) + T_0$
where $t = \text{time (min)}$
 $T_0 = \text{ambient temperature (°C)}$.

The ASTM E I19 curve was defined by a series of discrete points. For the sake of convenience, a number of equations which approximate the ASTM E I19 curve have been produced and one by Lie (195) is:-

T = 750[1 - exp (-3.79553 &)] + 170.41
$$\sqrt{t}$$
 + T_o where t = time in hours.

Table 2.1 shows the values of the ASTM E I19 curve and **ISO 834 for** a number of points.

Time	ASTM E119	ISO 834
(min)	Temperature (°C)	Temperature (°C)
0	20	20
5	538	576
10	704	678
30	843	842
60	927	945
120	1010	1049
240	1093	1153
480	1260	1257

Table 21: ASTM E119 and ISO 834 Fire Temperature Values

The values are shown graphically in Figure 2.5, which indicates that both methods produce similar time temperature curves as would be expected.

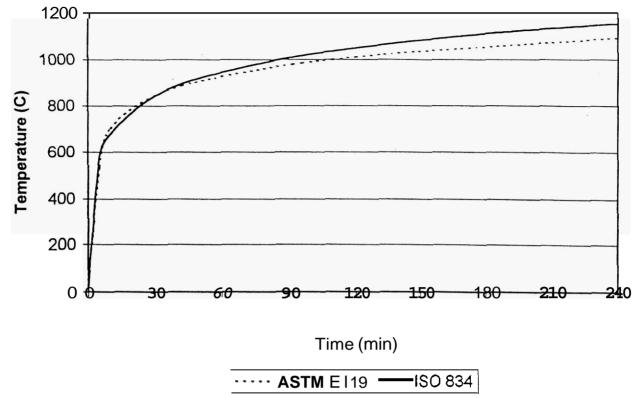
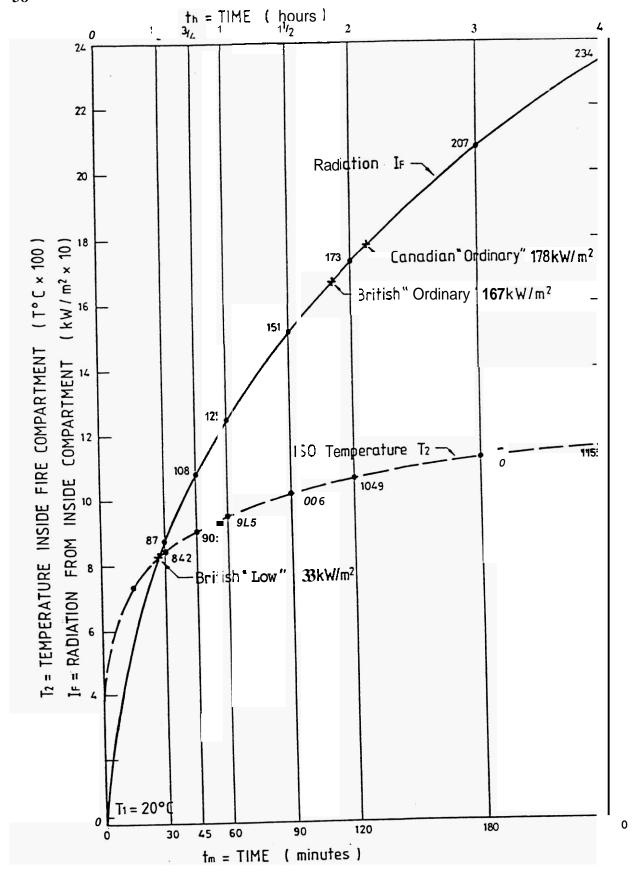
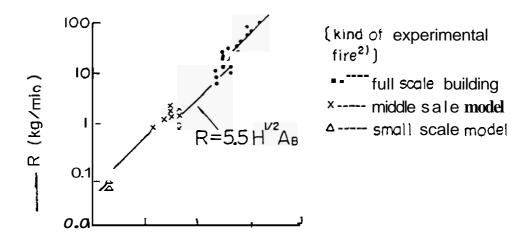


Figure 25: Standard Furnace Time Temperature Curves

It has been argued that if fire resistance ratings of structural elements in real fires can be determined by standard fire tests, it is logical to use the same fire tests as the basis for building separation requirements. Barnett (1988) proposed that for a simple method of determining building separations, the standard ISO 834 furnace time temperature curve could be used to approximate the temperature in a compartment and hence predict the radiation that would be emitted through any unprotected openings. In his paper, Barnett illustrates that the emitted radiation values used in the British and Canadian regulations are similar to the radiation values that would result from the temperatures from the ISO 834 fire for 30 minutes and 120 minutes. This is shown on Figure 2.6.

The standard furnace fire test curves are artificial constructs and bear little relationship to the time temperature curves resulting from real fires or from large scale fire tests in that both the initial slow growth and the decay phase are not included. However, both of these regions have substantially lower temperatures than the fully involved phase and hence have much less influence on the radiation being emitted from the compartment.




Figure 26: Values for ISO Temperature and Corresponding Radiation versus Time for a Fire Compartment

2.5 THEORETICAL AND EXPERIMENTAL WORK BY KAWAGOE

One of the earliest researchers into the behaviour of fully developed compartment fires was Dr Kunio Kawagoe of the Building Research Institute of Japan. Over a number of years Kawagoe and fellow researchers conducted experiments into the parameters affecting compartment temperatures and published a number of definitive papers on the subject (Kawagoe 1958, Kawagoe and Sekine 1963, Kawagoe and Sekine 1964, Kawagoe 1967, Kawagoe 1971).

Based on theoretical analysis of the flow **c** gases in and out of a burning compartment with a single opening, Kawagoepostulated that the rate of burning in the compartment followed the relationship:-

m' = 5.5
$$A_wH^{12}$$
 kg/min
where m = the rate of combustion
 A_w = area d opening (d)
H = height of opening (m)

Based on a simplified analysis of the heat balance in a burning compartment backed up by experimental results, Kawagoe's early work showed that the temperature in a compartment was dependent on the thermal conductivity of the compartment walls as well as a factor he called the "Opening Factor" which was defined as:-

Opening factor
$$= A_w H^{1/2}/A_T$$

where A_T = total internal surface area of the compartment

From a survey of a large number of Japanese buildings, the typical fire loads for various types of residential and commercial buildings were determined. The fire loads were given on an equivalent weight of wood per m² of floor area. Using a calorific value of wood of approximately 18 MJ/kg and based on experimental results which gave a combustion ratio of 0.6, Kawagoe took the wood equivalent as being 10.8 MJ/kg (2575 kcal/kg).

The values obtained from the survey varied from 20 to 600 kg/m² but for ease of analysis, **Kawagoe** took only two fire loads, 50 kg/m² for a normal fire and 100 kg/m² for a large fire. These are approximately 500 MJ/m² and 1000 MJ/m² respectively.

From the same survey, Kawagoe classified the buildings into nine groups based on their opening factors and calculated the theoretical fire duration times for the two fire loads. The classifications used are given in Table 2.2 below and the resulting time temperature curves taken from the 1963 paper are given in Figure 2.8.

		Fire Duration ne, T (min)	
Class	Opening Factor	For 100 kg/m ²	For 50 kg/m ²
Α	0.034	154	77
В	0.05	118	59
С	0.07	92	46
D	0.09	84	42
Е	0.10	64	32
F	0.12	48	24
G	0.16	42	21.
н	0.206	41	20
I	0.23	35	18

Table 2.2: Classification of Buildings by Opening Factor (Kawagoe)

It is on this early work by Kawagoe that most of the later work by other researchers throughout the world was based.

Infurther work Kawagoe re-examined the heat balance equation in more detail and allowed for more of the physical factors that affected the compartment temperatures.

These were the:-

Floor factor
$$\mathbf{F}$$
, $= \mathbf{A}/\mathbf{A}_T$
Where \mathbf{A} , = floor area \mathbf{A}_T = total internal surface **area**

Temperature factor $F_0 = A_w H^{1/2}/A_T$ (opening factor)

Fire duration factor $F_d = F_f/F_0$

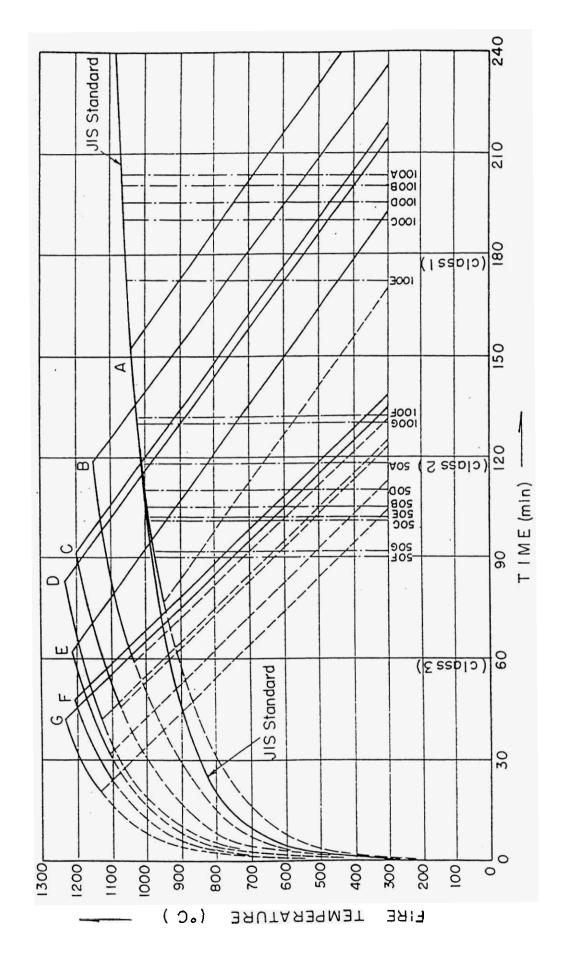
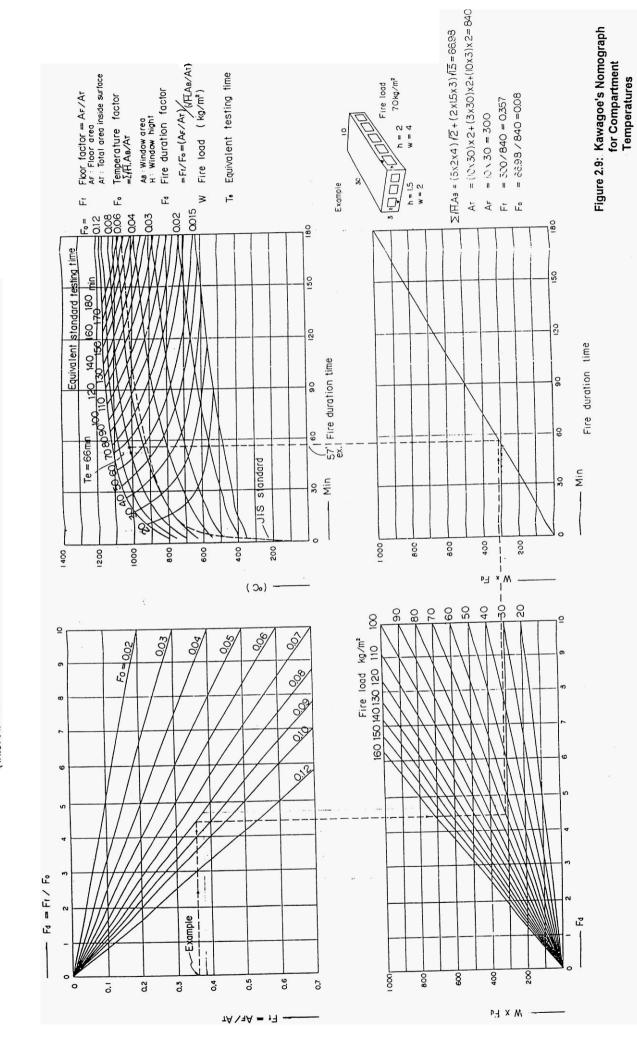



Figure 2.8: Kawagoe's Estimated Fire Temperature Curves

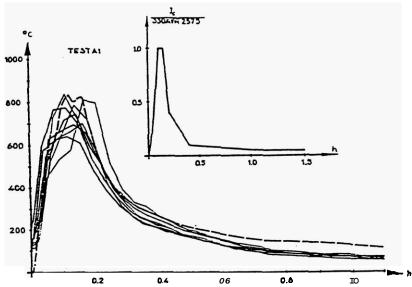
Fig. 8 Nomogram for the estimation of fire temperature time curve and equivalent standard test time

(where \(\lambda = 1.0 \) Kcal/mh*C, C= 0.3 Kcal/kg*C, \(\rho = 2400 \) Kg/m³, W = 5%, wall thickness 15 cm)

Based on this more refined analysis and more experimental work, a series of nornographs were produced which could be used to determine the compartment temperature of a particular building based on the physical configuration, the fire load and the thermal conductivity of the enclosure. A typical nomograph is shown in Figure **2.9**, which is taken from Kawagoe's 1967 paper.

Although Kawagoe's work is now somewhat dated, the approach would still be generally applicable. However, a considerable amount of rework would be necessary to produce nomographs for New Zealand conditions and it is considered that these forms of nornographs would **be** too complicated to be used in a generally simple acceptable solution.

2.6 SWEDISH FIRE CURVES


The main problemwith the early work in determining compartment temperatures was that little account was taken of the effect of different compartment geometries, fire loads or the thermal properties of compartment boundaries. In addition, the rate of decay of the fire was rarely considered although this could have a significant effect on the fire resistance of the structural elements in the compartment.

In 1970, a paper published in Sweden (Magnusson and Thelandersson, 1970) outlining a method which took most of these factors into account. Based on a comprehensive study of the results of wood fuel fires in compartments and building on the **work** of Kawagoe, a computer model was set up to solve the energy balance equation. The model assumed:-

- (a) complete combustion took place within the compartment;
- (b) the temperature was uniform throughout the compartment;
- (c) all internal surfaces had the same heat transfer coefficient;

(d) heat flow to and through the compartment boundaries was one dimensional and the boundaries could be assumed to be "infinite slabs"

One c the factors which has a significant effect on the shape c the time temperature curve is the energy release rate of the fuel as a function of time. The size and length of burning of a fire depends on the fuel, the ventilation and the thermal properties of the compartment. Magnusson and Thelandersson determined that the only way to establish the shape of the energy release rate curve was by analysing experimental data to establish a suitable relationship for a best fit curve. Using the results of about 30 full scale fire tests, energy release rate curves were determined for use as one c the main input values for the computer model. A graph of a typical test result is shown in Figure 2.10 with the smaller graph being the energy release rate and the larger showing the agreement between the calculated (dashed line) and experimental (solid line) temperatures.

Test A1

Percentages of the total bounding surface area:
Concrete, 20 cm in thickness, 34.8 per cent.
Lightweight concrete, 12.5 cm in thickness. 42.2 per cent.
Concrete, 3 cm in thickness+lightweight concrete, 10 cm in thickness, 18.3 per cent Window area 4.7 per cent.
Opening factor $0.06 \text{ m}^{1/2}$ (t > 0.1 h).
Duration of the fire 0.17 h.
Fire load 15.1 Mcal·m⁻² of bounding surface area.

Figure 2.10: Swedish Experimental Time Temperature Curves

By carrying out extensive calculations, Magnussonand Thelanderssonwere able to produce time temperature curves for the complete combustion process allowing for a wide range of fuel loads, ventilation factor, total compartment surface area and boundary thermal properties. To simplify the results, the fire load and ventilation factor (A√H) were divided by the total internal surface area of the compartment. Charts were then produced for seven types of fire compartments that had varying boundary materials. Figure 2.1 1 is taken from the paper and gives typical time temperature charts for a Type A enclosure. Note that t is the duration in hours of the flaming phase of the combustion process and q is the fire load density in Mcal/m². The configuration of the boundary materials of the seven types of compartments analysed in the paper is given in Table 2.3.

Compartment	Boundary Structure
Туре	
Type A	200 mm of a material whose thermal properties correspond to average values for concrete, brick and lightweight concrete. (Standard compartment)
Туре В	200 mm of concrete
Туре С	200 mm of lightweight concrete
Туре D	50% concrete 50% lightweight concrete
Type E	50% lightweight concrete 33% concrete 17% 13 mm plasterboard (internal) plus 100 mm mineral wool plus 200 mm brick (external)
Type F	80% 2 mm uninsulated steel 20% 200 mm concrete
Type G	20% 200 mm concrete 80% 2 x 13 mm plasterboard (internal) plus 100 mm air gap plus 2 x 13 mm plasterboard (external)

Table 2.3: Compartment Types for Swedish Curves

Figure 2.11: Swedish Time Temperature Charts

A series of graphs was produced from the charts to enable compartment temperatures to be determined quickly based on the fuel load, ventilation and compartment types.

Magnusson and Thelandersson's work was reviewed by Pettersson (1971) and later extended by Pettersson et al (1976) to produce an engineering method to design steel structures. The charts and graphs in the later publication were based on the earlier work, but were in the more widely accepted metric units and hence now have more overall acceptability. Figure 2.12 gives typical graphs for Type A compartments taken from Drysdale (1985).

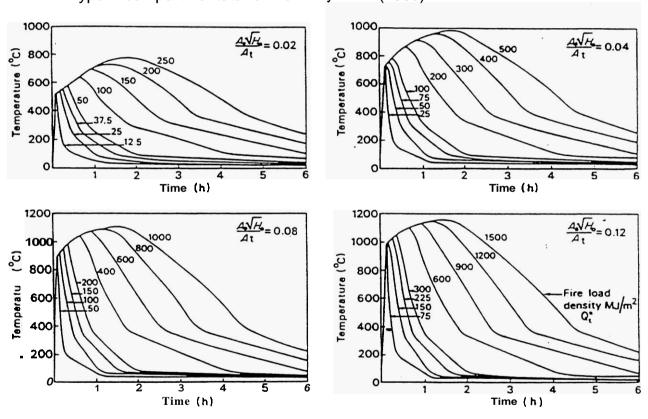


Figure 2.12: Typical Swedish Time Temperature Curves

Thus the Swedish fire curves give a set of realistic time temperature curves for compartment fires as a function of the fire load, the ventilation of the compartment and the thermal properties of the compartment boundaries. The curves rapidly gained acceptance and have been widely used within the fire engineering profession, either in their original state or as modified by subsequent researchers. However, although suitable for specific fire

engineering design by experienced practitioners, the curves would appear to be somewhat complicated for inclusion in the Acceptable Solutions. In addition, although they may give accurate compartment temperatures, the userwould then be required to undertake further calculations to establish the radiation for each specific case and this would be an unwanted complication for the majority of the users of the Acceptable Solutions.

2.7 SIMPLIFIED MATHEMATICAL EXPRESSION FOR COMPARTMENT TEMPERATURE BY LIE

In a paper presented in Fire Technology magazine, Lie (1974) reviewed the factors influencing the time temperature curve and noted that a number of the factors were very difficult to predict but had a substantial effect on the temperatures produced in a burning compartment. He proposed that it was not necessary to know exactly what the temperatures were at any point in time but rather to be able to find a fire curve for the building which, with reasonably probability, would not be exceeded. He further proposed that the most probable type of fire for most compartments would be ventilation controlled and as this was usually the most severe, this was the only type of fire that need be analysed.

In order to derive his analytical expressions, Lie used the work of Kawagoe and Sekine discussed in Section 2.5 to produce time temperature curves by solving the heat balance equation. In his solution, he used the same factor to allow for the ventilation conditions, ie:

$$F = AH^{\frac{1}{2}}$$

He found that the thermal properties of the boundary materials did not have a great influence on the curves unless there was a large variation in the properties. He proposed that only two types of boundary conditions need be considered:-

(a) Heavy materials such as concrete, brick, etc. with a density greater than 1600kg/m³

(b) Light materials such as lightweight concrete, plasterboard, etc. with a density of less than 1600 kg/m³.

Figure 2.13 shows the time temperature curves for a heavy wall compartment for various opening factors.

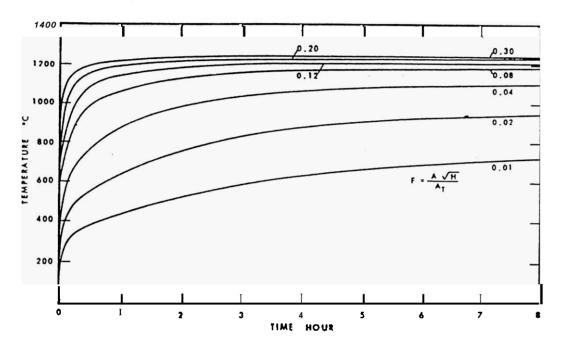


Figure 2.13: Lie's I ime Temperature Curves for Heavy Walled Compartment based on Heat Balance

By analysing the curves, Lie was able to derive a mathematical expression that reasonably described them. That expression was:

T = 250 (1
$$e^{-0.6t}$$
) - (1 - e^{-3t}) + 4(1 - e^{-12t}) + C 0

Where T =fire temperature ("C)

t =time (hrs)

C = constant based on boundary materials.

C = 0 for heavy material ($P \ge 1600 \text{kg/m}^3$) and

C = 1 for light materials ($P \le 1600 \text{ kg/m}^3$)

Figure 2.14 shows the comparison of the curves produced by the analytical expression with those derived from the solution of the heat balance equation for lightweight boundary materials.

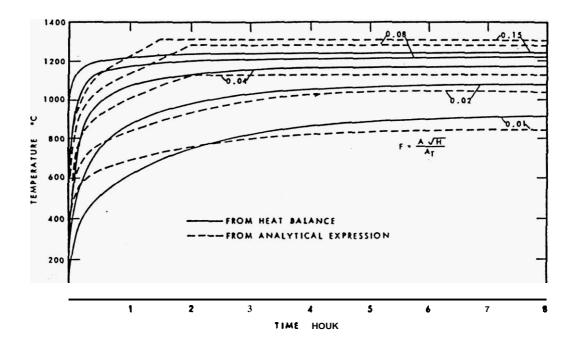


Figure 2.14 Comparison of Time Temperature for Light Walled

Compartment obtained from Heat Balance and Mathematical Expression

Although the expression produced curves that tended asymptotically to a maximum temperature after a long duration, all fires will start to decay once the fuel is consumed. Based on Kawagoe's rate of burning expression:

$$R = 330AH^{4}$$

Where $\mathbf{R} = \text{rate of burning in kilograms/hour}$

Lie showed that the length of the burning phase of a fire was given by:

$$t = \underline{\mathbf{Q}}$$

Where Q is the fire load per unit area of total internal compartment surface (kg/m^2)

After the time *t*, the time temperature curve starts to decrease and Lie derived an expression for the typical decay rates. A typical resultant graph of the time temperature curve is shown in Figure 2.15 for a compartment with heavy boundary materials and an opening factor of 0.05.

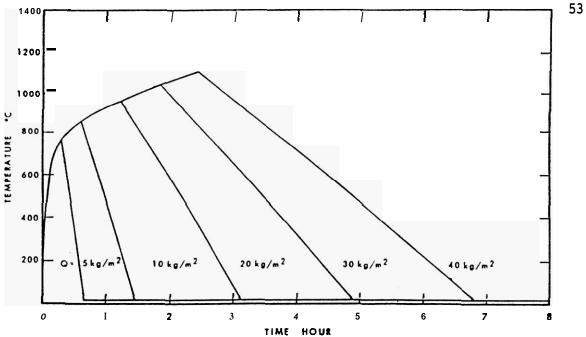


Figure 2.15: Characteristic Temperature Curves from Lie

By comparing his expression with the results of numerous experiments, Lie was able to confirm that it produced curves that were reasonably conservative. A typical comparison with experimental results is shown in Figure 2.16.

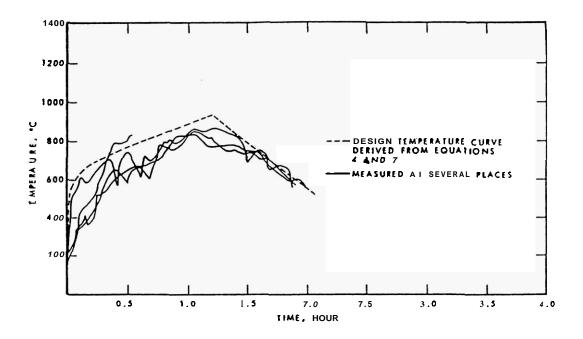


Figure 2.16: Comparison of Experimental and Analytical **Time Temperature Curves**

Although it is relatively simple to produce curves from the Lie expression using a spreadsheet, the complications mentioned in earlier sections still apply and therefore rule out the method for use in a simple Acceptable Solution.

2.8 BABRAUSKAS'S APPROXIMATE METHOD FOR PREDICTING COMPARTMENT TEMPERATURES

After undertaking detailed theoretical analysis and experimental verification of the post flashover compartment temperatures Babrauskas (1978) developed a computer programme, COMPF2, to calculate the characteristics of a single compartment fire with ventilation through a single opening (1979). This computer model will be reviewed later in this chapter. After this work, Babrauskas wanted to provide a simple calculation method that produced results that fairly accurately agreed with the compartment temperatures predicted by detailed numerical analysis using computer methods.

From his earlier review of the theory, Babrauskas determined that the compartment fire temperature was principally influenced by the following variables:

- (a) Fuel release rate
- (b) Ventilation opening size and shape
- (c) Room wall and ceiling thermal properties
- (d) Combustion efficiency
- (e) Heat of combustion of the fuel
- (9 Effective emissivity of the fire gases

By selecting suitable approximate expressions to account for the above variables, Babrauskas then curve-fitted these expressions to results produced by COMPF2. The expression Babrauskas produced (1981) was:

$$T_1 = T_2 + (1725 - T_2) \cdot \theta_1 \cdot \theta_2 \cdot \theta_3 \cdot \theta_4 \cdot \theta_5$$

Where: T_i is the fire temperature

T_a is the ambient temperature ("C)

 θ_1 - $_5$ are efficiency factors as detailed below

θ₁ Burning Rate Stoichiometry

This variable accounts for the heat release rate for the fuel and Babrauskas produced various expressions for general fuel types, wood cribs and pool fires. The expression compares the actual burning rate with the burning rate at stoichiometry where just sufficient air is provided to fully burn the fuel without residual fuel or air remaining. A dimensionless variable ϕ known as the equivalence ratio is defined as:

$$\varphi = \underline{Q}_{st}$$

where Q = the actual heat release rate

and Q_{st} = the stoichiometric heat release rate.

For general conditions:

$$Q_{st}$$
 = 1500 A/H
so φ = $\frac{Q}{1500 \text{ AJH}}$

Where A = area of opening H = height of opening

For situations where there is excess air, the burning is said to be fuel lean and ϕ is less than 1. In these situations,

$$\theta_1 = 10 + 0.51 \ln \phi$$

Where there is excess fuel, known as fuel rich, ϕ is greater than 1 and $\theta_1 = 1.0 - 0.05 (\ln \phi)^{5/3}$

A graph for determining θ_1 is given in Figure 2.17

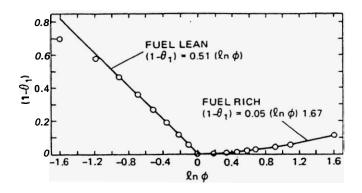


Figure 2.17 Effect of Equivalence Ratio (SFPE)

θ₂ Wall Steady State Losses

This factor accounts for important variables involving the compartment surface properties: area A_T (m^2), thickness L (m), density ρ (kg/m^3), thermal conductivity k (kW/m.K), and heat capacity C_p (kJ/kg.K).

This factor is given as: $\theta_2 = 1.0 - 0.94 \exp \left[-54 \frac{A \cdot H}{A_T} \right]^{2/3} \left[\frac{L}{k} \right]^{1/3}$

and this is shown in Figure 2.18.

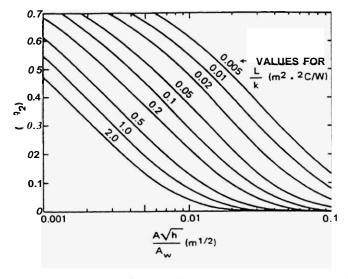


Figure 2.18 Effect of Wall Steady State Losses (SFPE)

8, Wall Transient Losses

If a transient temperature is required, the steady state value given above must be modified by a factor which is based on the Fourier number and from curve fitting was derived as:

$$\theta_3 = 1.0 - 0.92 \exp \left[-150 \left(\frac{A \sqrt{H}}{A_T} \right)^{0.6} \left(\frac{t}{k \rho c_p} \right)^{0.4} \right]$$

This expression is shown in Figure 2.19.

Note that if steady state conditions are required $\theta_3 = 1.0$.

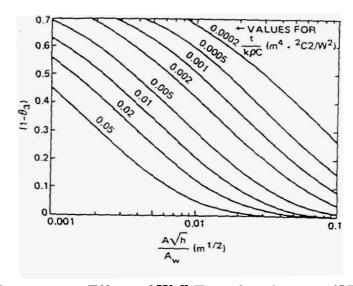
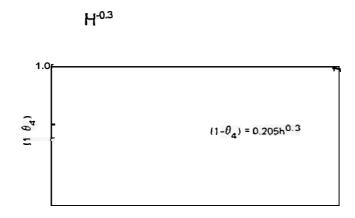



Figure 2.19 Effect of Wall Transient Losses (SFPE)

θ_4 Opening Height Effects

θ₅ Combustion Efficiency

In evaluating the heat balance equation, a fire compartment is generally considered as well stirred reactor. However, in actual fires. this is not the case and there is always some degree of non mixing which reduces the compartment temperature. A maximum combustion efficiency b, can be used to reflect the degree of non mixing. No actual experimental values for b, have been determined, but agreement with the measured temperatures in real fires can generally be obtained with values of b, in the range of 0.5 to 0.9. The effect of variation in b, is given by:

 $\theta_{i} = 1.0 + 0.5 \text{ lnb},$ as shown in Figure 2.21.

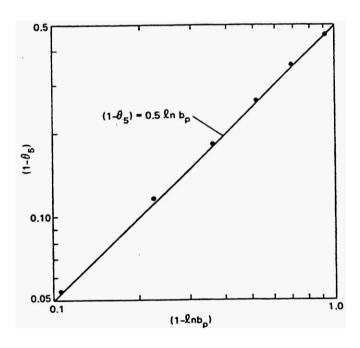


Figure 2.21 Effect of Combustion Efficiency (SFPE)

After extensive comparisons with the results obtained from COMPF2, Babrauskas found that there was good correlation with the results for both ventilation limited and fuel rate limited fires. The results of the approximatemethod generally agree within 3% of the COMPF2 values. Figure 2.22 shows the comparison between the approximate method and the COMPF2 results for a wood crib fire in a 200 m² compartment with a 2 m x 2.5 m wide opening in one wall.

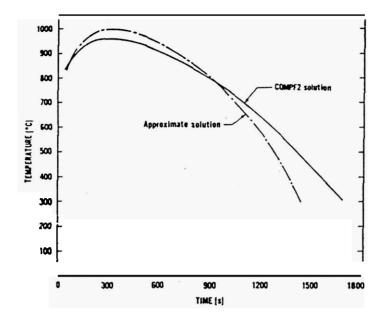


Figure 2.22 Comparison of COMPFZ and Approximate Method

Thus, by using the series of graphs given in Figures 2.17 to 2.21, it is relatively simple **to** produce a compartment fire temperature that would be sufficiently accurate for use in the radiation calculations. However, the method still requires a significant degree of engineering knowledge and experience to determine the various parameters needed in establishing the factors. Therefore, although the method is relatively simple and probably advantageous for fire engineering professionals, it is not suitable for **a** generalised method necessary for the Acceptable Solutions.

29 EUROCODE PARAMETRIC FIRE

As part of the move to have common European standards, as required by the European Commission, the European Committee for Standardisation (CEN) produced Eurocode 1 Parl 2-2 "Actions on Structures exposed to Fire" (EC1 1995). The document provides a formula for calculating a fire time/temperature curve that was considered to be more in line with the behaviour of real fires in buildings. The formula takes into account the main parameters that were considered to influence the growth and development of fires, ie. fire load, opening (ventilation) factor, area of the enclosure and thermal properties of the enclosure boundaries. As indicated by Buchanan (1998), the formula was an attempt to approximate the Swedish curves discussed in Section 2.6 earlier.

The EC1 method divides the fire development into **two** phases, a heating phase and a decay phase. The time temperature curve for the heating phase is given by:-

$$T_g = 1325 (1-0.324e^{-0.2t^4} - 0.204e^{-1.7t^4} - 0.472e^{-19t^4})$$

where t* is the modified time given by:-
t* = t (F_v/0.04)².(1160/ $\sqrt{(k\rho c)}$)²
 F_v is the opening factor given by:-
 $F_v = A_v \sqrt{H/A_t}$.

The heating phase continues for a time $t_{\rm d}$ given by:

$$t_d = .00013q_t (F_v/0.04)^2.(1160/\sqrt{(kpc)})^2. \left(\frac{1}{F_v}\right)$$

where k = thermal conductivity of the compartment's boundaries

c = the specific heat of the compartment boundaries

 ρ = the density of the compartment boundaries

 q_t = the fire load per unit area of the total area of the enclosure.

The dewy phase of the curves is taken as linear and is based on the duration of the heating phase. Typical graphs produced by the Eurocode formula are given in Figure 2.23.

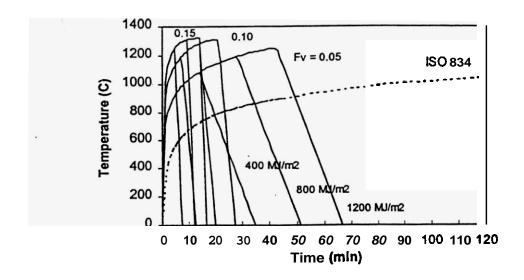


Figure 2.23 Typical Time Temperature Curves for Eurocode Parametric Fires

Although the EC1 formula has a sound scientific basis, its validation was with experimental test fires performed in small compartments. There has been some debate on the validity of the linear short term decay phase with respect to real fires. Comparing the time temperature curves predicted by EC1 with the experimental test results for large scale compartment fires, Clifton (1996), for tests carried out by BHP in Australia, and Wang (1996), for tests carried out at Cardington, both showed that the decay phase of real large scale fires was generally much more extended than that predicted by EC1. Figure 2.24 shows a typical result given in Wang's paper for the Cardington tests.

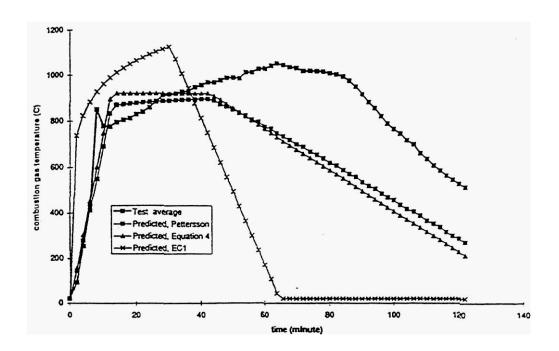


Figure 2.24 Comparison of EC1 Fire Curve with Experimental Results

Although the shape of the decay phase is important when considering the fire resistance of structural elements in a compartment, for calculating the maximum compartment temperature for radiation effects these refinements are not necessary.

Although the EC1 formula can be readily calculated using spreadsheets, it is far too complicated to be used in an Acceptable Solution. A possible alternative based on the EC1 would be the nomogram proposed by Franssen (1996) shown in Figure 2.25. Although this nomogram takes out some of the complications of the formula, there is still a substantial degree of calculation and knowledge

required. For this reason, it is not considered applicable to an Acceptable Solutions type of approach.

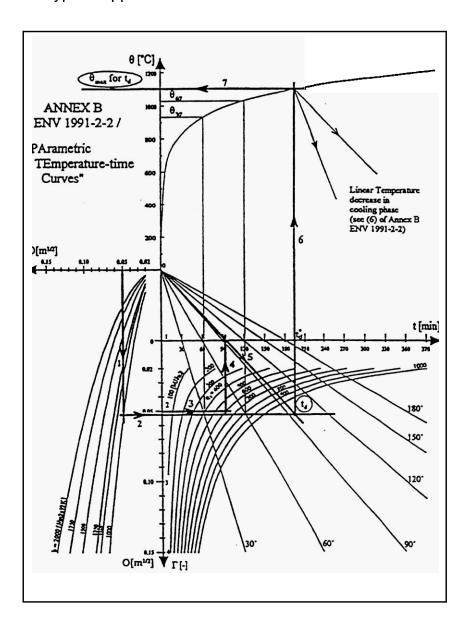
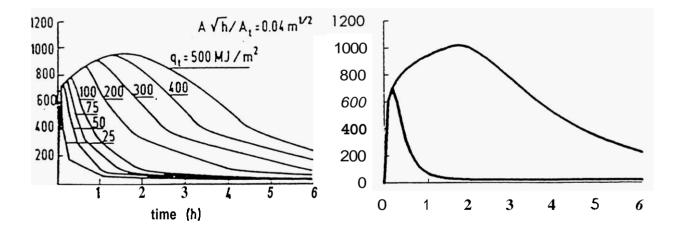


Figure 2.25 Nomogram for EC1

2.10 BARNETT'S BFD CURVES


In a presentation at the 1996IPENZ Conference, Bamett proposed the use of a design time temperature curve which he termed a "BFD curve" (Bamett, 1996). The curve is based on the formula:

$$T_2 = T_3.e \frac{(\log t - \log t_p)^2}{f} + T_1$$

where T_1 = the ambient temperature °C T_2 = the temperature at any time t °C T_3 = the maximum temperature generated °C t = time from start of fire (min) t_p = time at which T_3 is reached (min) f = growth factor f_0 , or the decay factor f_d

The methodwas principally designed to be used to determine the fire resistance of structural members in a compartment fire.

The presentation was based on an earlier paper by Bamett (1995) which described the preliminary theories behind the BFD curves and showed that by judicious choice of the various parameters of the equation, other design curves such as the Swedish curves or the ISO curve could be generated. For example, Figure 2.26 shows the Swedish (Building Type A curves) compared to the BFD curves modelling the 50 and 500 MJ/m² fire loads.

Swedish Curves

BFD Curves.

Figure 2.26 Comparison of Swedish Curves and BFD Curves

In addition to design curves. BFD curves can also be used to model the results of experimental test fires. As an example, Bamett used the results reported by Kirby (1994) to model the large scale wood crib fire tests carried out at Cardington. An example of this modelling is shown in Figure 2.27 with the markers being the test results and the solid line the BFD curve.

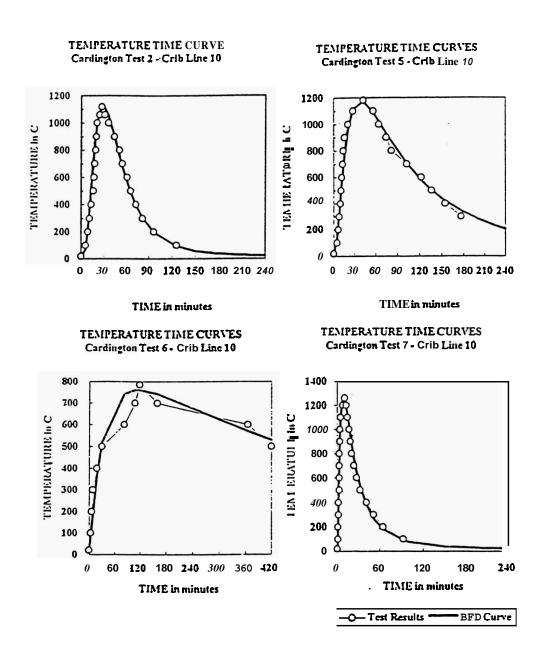


Figure 2.27 Comparison of Experimental Results with BFD Curves

A sample of some of the parameters that Bamett has derived for various design and experimental fires are given Table 2.4.

Time Temperature Curve	BFD Parameter			
	T ₃	t _o	f_	f _{et}
ISO 834	1400	9700	-65	-
Swedish Curve - Growth	1575	37000	-80	-
500 MJ/M² Decay	1018	105	-	-29
Cardington Test 2	1100	29	-0.8	-0.8
Cardington Test 5	1160	39	-1.6	-1.6
Car Test	590	13	-1.0	-1.0

Table 2.4 BFD Parameten for Fire Curves

Although the BFD curve method proposed by Barnett appears as though it may be a valuable design tool for fire engineers in the future, the theory has still to be defined and the method is not suited for simplified use as required for an Acceptable Solution.

2.11 COMPUTER MODELLING OF COMPARTMENT FIRES

Computer modelling of compartment fires is a specialised field and completely outside the realms of an Acceptable Solution. However, for the sake **c** completeness several of the computer models readily available are briefly described.

Although computer programmes were used for calculating post flashover fire temperatures by Kawagoe (1967) and Magnussonand Thelandersson (1970), as described in earlier sections of this chapter, the most enduring and widely accepted of the early computer programmes is COMPF2 by Babrauskas (1979). A detailed review of COMPF2 has been carried out by Wade (1995) and the programme has been used by researchers in New Zealand such as Thomas (1995). Figure 2.28 shows a graph of the type of fire time temperature curves generated by COMPF2.

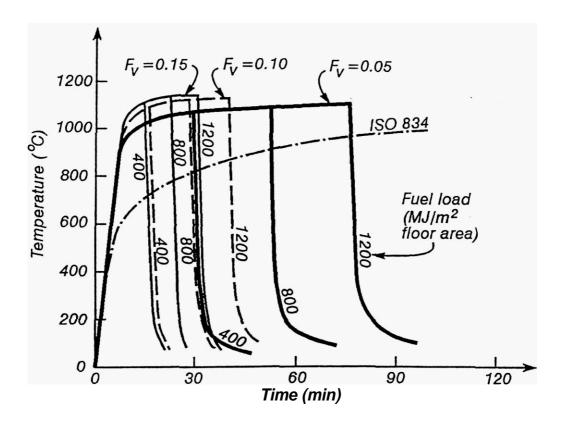
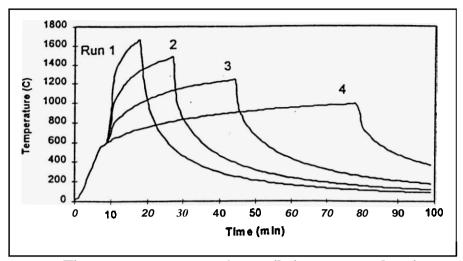
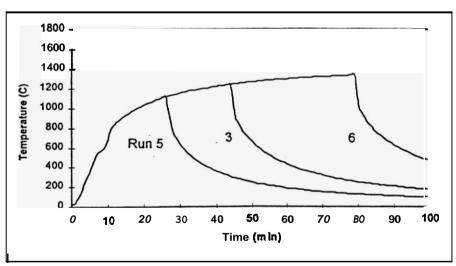


Figure 2.28 Time Temperature Curves obtained from COMPF2


A master's research project is presently underway by Feasey (1998) to determine a methodology for using COMPF2 for typical New Zealand conditions.

Of the more recent computer programmes in general distribution, the most frequently used are FPEtool, CFAST and FASTLite. The earliest of these programmes is FPEtool, which contains a fire modelling module called "FIRE SIMULATOR which is described in the **NIST** manual by Deal (1993). Considerable testing was done by a number of researchers such as Nelson and Deal (1991) to verify that analysis using FPEtool provided reasonable approximations to experimental test data. Based on the testing it was considered that a reasonable level of confidence could be placed on the model, at least for one room configurations.


CFAST is a more refined model that allows for a number of parameters not available in FIRE SIMULATOR such as interconnected rooms, ceiling vents and fans. The use of CFAST if described in the manual by Peacock (1997). Again, numbers of researchers have carried out experimental verification tests of CFAST. In work by Dembsey (1995) it was found that CFAST tended to predict hotter compartment temperatures than were achieved in the experiments, but as this was a conservative result it was considered satisfactory.

Because of the good agreement with test results CFAST has been used in conjunction with other programmes to predict the fire resistance of different building elements rather than undertaking full scale testing. Lin (1997) reports on analysis undertaken to predict the thermal and structural performance of timber framed walls exposed to simulated office fires.

Although CFAST is a more robust model than FIRE SIMULATOR, it is substantially more complicated to use and in an attempt to provide a more user friendly tool NIST produced FASTLite which has a range of applications similar to FPEtool but which has a fire growth model that is a simplified version of the CFAST zone model. The user manual for FASTLite was provided for NIST by Portier (1996). A paper by Buchanan (1998) describes in detail the way in which FASTLite may be used to model post flashover fires. Figure 2.29 shows the time temperature curves produced by FASTLite for a compartment with a constant window size and a varying fuel load and vice versa. Buchanan compares the output from various FASTLite runs with the time temperature curves produced in the Swedish curves and using COMPF2, and concludes that the temperatures produced by FASTLite are higher than those of the other methods. At the conclusion of his paper, Buchanan makes a number of recommendations for suggested improvements to the FASTLite programme to enable additional flexibility of input, improved modelling of the fire temperature curve and remedying of a number of software bugs.

Time temperature *curves* for ventilation controlled burning, with constant fuel load and Varying Window size.

Time temperature **curves** for ventilation controlled burning, with constant Window size and varying fuel load.

Figure 2.29 FASTLITE Generated Fire Curves

2.12 RECOMMENDED METHOD OF DETERMINING EMITTED RADIATION FOR THE ACCEPTABLE SOLUTIONS

The majority of the methods for establishing compartment temperatures reviewed in this chapter and in the extensive background research carried out for this report are not considered suitable for use as the basis for radiation calculations

for an Acceptable Solution for boundary separation. Although the methods are very valuable and can be used to great benefit by experienced professionals for specific circumstances, they are generally aimed towards providing information for establishing fire resistance of structural members. The reasons for rejecting the various methods are one or more of the following:

- Requires extensive computation
- Requires detailed fire engineering knowledge to choose correct values for variables
- Requires compartment variables to be specified to a greater extent than
 is practical for a building that may vary in the future

Any method to be used for an Acceptable Solution must be capable of being quickly and easily used by people who have no fire engineering knowledge or training and who do not wish to be involved in the intricacies of extensive mathematical computations. From the review carried out for this report and from several years of practice, it is considered that the present Acceptable Solution method in which prescribed radiation values (or compartment temperatures) are used is probably the most suitable for a generalised, easily used solution. However, it is considered that the present method using only two gradations of radiation is too coarse and the values used are not generally consistent with results obtained from more rigorous analyses.

It is proposed that four values of emitted radiation be used based on the fire hazard categories defined in the present Acceptable Solutions and described in Section 1.3 of this report.

Appendix B of this report compares the compartment temperatures obtained using a number of the methods described in this chapter for a typical moderate sized roomwith a range of fire loads. It is acknowledged that this is for a specific configuration but the results show a spread of values with the highest being approximately 20% higher than the lowest value in each case. The values

obtained using the standard ISO curve approach described in section 2.4 were generally midway in the range of results.

As has been indicated earlier, the standard fire curves are used to define the time temperature curves to be produced in furnaces to test the fire resistance of building materials and elements. The concept was first introduced in 1916 and the values used were based on temperatures obtained in early ad hoc testing carried out using wood fires (Drysdale). The standard fire curves are generally not consistent with the time temperature curves obtained from actual compartment fire tests. However their use in defining a temperature to be used to establish an emitted radiation values has several advantages:-

- (a) The concept of standard fire curves is already accepted.
- (b) The standard fire curves are already defined and values can readily be obtained from simple equations.
- (c) The fire resistance of external walls is already considered in the Acceptable Solutions and the approach has been readily accepted by users.
- (d) The values obtained using the method are not inconsistent with the results of more rigorous theoretical analyses based on experimental results.

Based on the above, it is considered that using the temperatures obtained from the ISO 834 standard fire curve to generate emitted radiation values is an acceptable compromise to the various methods that have been reviewed.

Using the design values of FLED for each of the Fire Hazard Categories the fire resistance ratings for typical compartments were obtained from Table 1 of C3/AS1, and with some degree of rounding of the values, the typical ratings are 30 min, 60 min, 90 min and 120 min for FHC 1 to 4 respectively.

Using an ambient temperature of 20°C the resulting ISO curve temperatures were determined and from these, emitted radiation values calculated. The figures are given in Table 2.5 below together with the rounded proposed radiation values to be used in the Acceptable Solution.

Fire Hazard Category	Fire Resistance Rating (mm)	ISO Curve Temperature (°C)	Exact Radiation (kw/m²)	Proposed Radiation Values
1	30	842	87.2	85
2	60	945	125	125
3	90	1006	151	150
4	120	1049	173	175

Table 2.5 Proposed Emitted Radiation Values

CHAPTER 3: HEAT RADIATION TRANSFER

Once the radiation intensity being emitted by the fire compartment has been established, it is necessary to consider how that radiation is transferred to the target building. A considerable number of factors are involved which can either increase or decrease the effect of the radiation and these will be considered in this chapter.

3.1 FLAME PROJECTION

As was stated in Chapter 2, this report deals with fires that have flashed over and are in the fully developed burning phase of the fire curve. In this situation, it is usual for flames and hot gases to be emanating from any openings which do not have fire rated closures over them. As can be readily observed from both fire tests and actual fires, the height of these flames above the window and the horizontal distance that they project out from the face of the wall can be quite considerable. The NZBC Acceptable Solutions, like the regulations of most other countries apart from Canada, do not allow for the effect of flame projection and the purpose of this section is to see whether this is valid.

In his paper reviewing spread of fire from compartments, Quintiere (1979) cites experiments done in 1958 by the National Research Council of Canada where a number of full scale fire tests were carried out on buildings in the town of Aultsville (Shorter 1960). These tests are often referred to as the St. Lawrence Bums. In these tests, the radiation measured outside the burning buildings was considerably higherthan the figure calculated from the compartment temperature and the window opening. Although there were other factors involved, one of the principal reasons for the higher values was considered to be the large flames projecting from the windows and the burning of the exterior cladding above the windows.

In later work, Law (1968) carried out full scale fire tests to specifically investigate radiation from fires in a compartment. Radiometers were placed outside the opening in the fire compartment with one of the radiometers being shielded from any flames projecting above the height of the window. A number of tests were carried out using varying fire loads and window areas and the results were used to review a number of the factors influencing radiation from a burning building. The tests showed that for the large opening, which was about half of the wall area, the difference between the total radiation measured and that coming from the window alone was not significant except at high fire loads. For the tests with the opening being a quarter of the wall area, the flame radiation became more significant with the difference in the maximum radiation values being 25% of the total radiation. However, the effect of the fire load and the window size on the radiation measured outside the building was much more significant than that of the flames. From a statistical analysis of the results Law concluded:-

"The extra radiation from flames outside the openings was not large enough to warrant altering the recommended separation distances on which present building regulations have been based."

Figure 3.1 shows the total radiation and window only radiation for the various tests.

In later work in association with Thomas (1974), Law again looked at the effect of flame projection but this time on external structural steelwork located outside the opening of a burning building. In this paper, they reviewed the work on flame projections done by Yokoi (1960), Webster and Raftery (1959) and Seigel (1969). This work had shown that the width/height ratio of openings had an important effect on the flame trajectory. With wide windows the flame does not project far from the wall and clings to any wall above, while with the narrow openings the projection is further as it is easier for air to enter between the wall and the flames when the flame front is narrow. Using empirical correlations of the data produced by the earlier researchers, Law and Thomas derived an approximate formula for the height of a flame above a window as:-

$$z = 18.6 \left(\frac{R}{W} \right)^{v_s} - H$$

where R is the rate of burning (kg/sec)
H is the height of the window
W is the width of the window

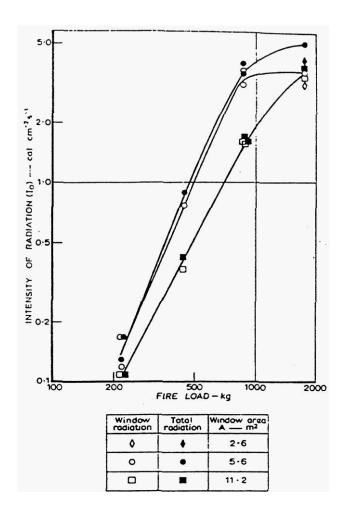


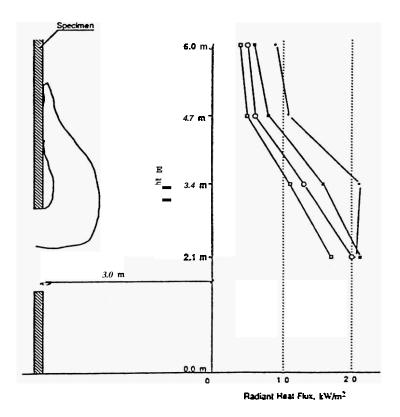
Figure 3.1: Radiation from Windows and Flames from Law's Tests

It was noted in the Law and Thomas paper, that the above formula for flame height tended to give larger values than those found in experimental work. For a later paper in conjunction with OBrien (1981), the correlation was revised *to:*-

$$z + H = 12.8 \left(\frac{R}{W}\right)^{\frac{4}{3}}$$

which seemed to better agreement with the experimental results. In this later paper Law and OBrien also provided correlations for calculating the flame projectionout from the face of a wall for situations where there is a wall above the window:-

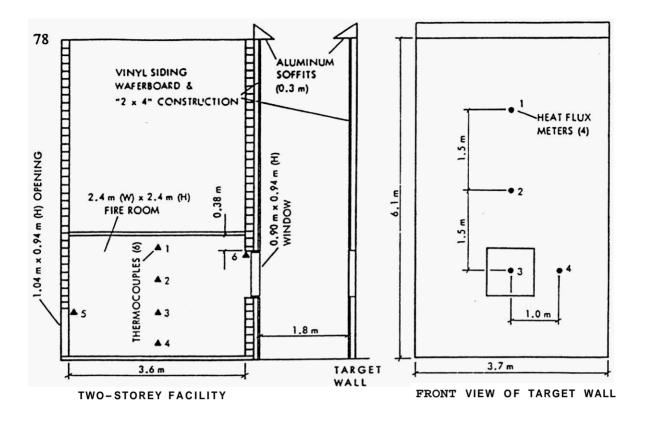
for H < 1.25 W (most situations) P = $\frac{4}{3}$ H for H > 1.25 W P = 0.312H^{1.54}W^{-0.54} + H


(Note that in many texts the last term, \underline{H} is usually neglected.)

As in the previous paper, the emphasis in this paper was to determine the effect of flame projections on steel members outside the opening. It was not considered that flame projections need be included in boundary separation considerations for a number of reasons. These were:-

- (a) Separation distances are based on the areas of unrated wall rather than only windows. Although the glass windows may break and allow flames to project out of the opening, the non fire rated sections of wall will withstand the effect of the fire for some time before allowing flames through.
- (b) Separation calculations are usually based on a maximum intensity radiating from the entire unrated area for the full length of time, which tends to produce an overestimate of the radiation flux reaching the neighbour.

Based on the results of the St.Lawrence Bums, Canada is one of the few countries which incorporates a flame projection distance in its standard charts for building boundary separations. Following a research programme for the National Research Council of Canada, Yung and Oleszkiewicz (1988) reported on the results of full scale fire testing for fire spread by exterior walls.


The first full scale test was to determine the effect of combustible claddings above an opening through which flames were projecting. The radiometers were placed on an adjacent wall three metres from the opening at various positions above the opening. Different types of cladding material were used above the flaming opening and the results of the tests are shown in Figure 3.2. As expected, the radiation from the flames decreased with the height above the opening and increased with the combustibility of the wall cladding of the emitting building

Maximum radiant heat flux recorded by radiometers on target mast, full-scale tests: ☐ Marinite, O gypsum sheathing, ■ assembly showing limited flame spread, • assembly showing flame spread to the top of the wall

Figure 3.2: Radiation from Flames

The paper also reports on a full scale fire test conducted to assess the fire spread potential to a neighbouring building located 1.8 m away from a flaming opening, with both buildings having combustible cladding. The test set up and results are shown in Figure 3.3.

Full-scale fire spread test setup

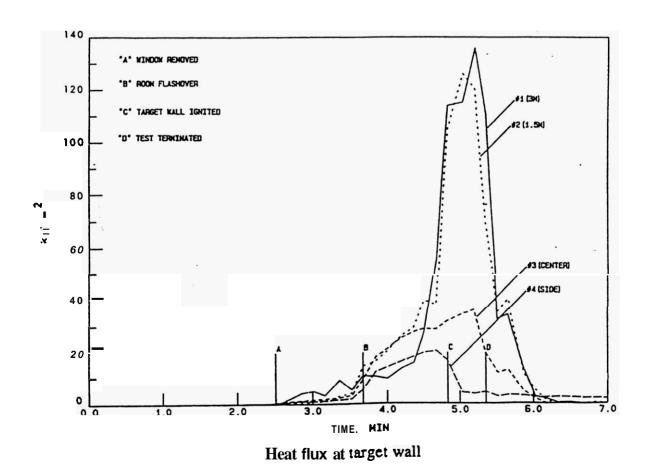


Figure 3.3: Canadian Radiation Testing for Flaming Opening

The fire was started with the window glass in place. At 2.5 minutes the glass was manually removed after it had cracked. This is Point A on the graph. Prior to this time, the radiation flux on the target wall was insignificant. At Point B flashover occurred and flames and hot gases started issuing from the opening. The facade above the window ignited and at 4 minutes 40 seconds the flux readings on the target wall were 29 kW/m² at the opening, 38 kW/m² at 1.5 m above the centre of the opening and 55 kW/m² at 3.0 m above the centre. These figures are all well above the normally accepted heat flux for non piloted ignition of combustible cladding of 25 kW/m² and shortly thereafter the target wall ignited. This is Point C on the graph. At this point, the fire room temperature was relatively uniform at about 1000°C. If the results of the experiment are compared to a FIRECALC analysis based on the experimental configuration and assuming radiation coming only from the window, the maximum radiation directly opposite at a distance of 1.8 m would be 11 kW/m² compared with the 30 kW/m² obtained in the test. This intensity of radiation would be achieved if it was assumed the window was located one metre away from the target wall. To check the effect of the flame projection, the same test was carried out with a fire window over the opening and the maximum radiation on the target wall was only 5 kW/m². This agrees well with the FIRECALC analysis, assuming 50% attenuation through the fire window glazing.

In a paper presented to the second international symposium of the International Association of Fire Safety Science Barnett (1988), proposed that if specific flame projection and flame temperature calculations were not carried out an additional two metres should be added to the required building separation to allow for the effect of external flaming. However, from the example analysis given in Appendix C of this report, it can been seen that the effect of external flames for a typical sized window would be to increase the separation by only 0.32 m. Although larger flame projections from tall narrow windows and from larger overall radiators may occur, the figure of two metres proposed by Barnettwould appear to be overly conservative. An increase of 1.2 m in the building separation, as used in the Canadian Code would appear to be more applicable,

but for ease of calculation and as the present Acceptable Solutions do not include any allowance at all, projections of **1.0** m are proposed for Fire Hazard Categories **3** and **4** and **0.5** m Fire Hazard Categories **1** and **2**. The large projection for the higher categories is because the higher fire loads will result in ventilation controlled burning with significant external flaming.

3.2 EMISSIVITY

Methods for calculating the emissivity of flames projecting from a burning compartment are described in Appendix C. However when considering the radiation coming from the openings of a burning compartment, all of the researchers included in the reference list advocate the use of an emissivity equal to 1.0. This was particularly noted in the work done by Law for Fire Research Technical Paper No.20 (1968), in which she states that the compartment should be assumed to be a black body when determining the radiation being emitted through any openings. In the literature review undertaken as part of this project, no references could be found to justify a value for the emissivity of less than 1.0.

3.3 CONFIGURATION FACTORS

The intensity of radiation received on a surface remote from the emitter can be found by using an appropriate "configuration factor", which takes into account the shape of the emitter, the shape of the receiver and the geometrical relationship between the *two*. Values of configuration factors are given in most heat transfer texts, such as **Incropera** and de Witt (1970) or Howell (1982). In essence the configuration factor is the factor by which the value of emitted radiation is multiplied by in order to achieve the maximum received radiation. For the values used in the Acceptable Solutions, a configuration factor of 0.075 is used for the higher intensity fire and a factor of 0.15 is used for the lower value of emitted radiation.

The boundary separation tables of the Acceptable Solutions, like those of most other countries, assume that the receiver is located opposite the centre of a

rectangular emitter. The configuration factor for this situation is given as part of the analysis of the C3 tables outlined in Appendix A of this report. For situations where the entire facade of the rectangle is assumed to be on fire, the configuration factor method is accurate and relatively straightfoiward. However, when there are number of openings in a fire rated wall the configuration factor method must be applied with care. As set out in the original paper by Law (1963), configuration factors for walls with regularly spaced openings can be based on the proportion of the area of the unrated openings compared to the overall wall area. However, if a wall has an uneven distribution of openings or widely spaced openings, the effect of increases or decreases in the proportion of unrated area to overall wall area must included. In the early work to produce spatial separation tables using the overall configuration factor method such as that by McGuire (1965), a considerable amount of manual computation was required to produce the tables and consider any local variations. With this amount of manual computation came the inherent risks of errors. To allow more rapid calculation of spatial separation and consideration of the effects of non uniform openings, Williams-Leir (1966 and 1970) proposed various approximations that gave relatively close agreement to the exact calculations using the configuration factor method. However with the advent of easily accessible computers and spreadsheet programmes, the drudgery of hand calculations has been eliminated and the effect of local concentrations of openings can be rapidly assessed, as shown in the spreadsheet included in Appendix A.

Based on the above, it is considered appropriate to continue to use the configuration factor method assuming a rectangular radiator as used in the Acceptable Solutions, but with the proviso that the effects of a non uniform distribution of openings must be considered.

3.4 WIND

In the C3 tables of the Acceptable Solutions the effect of wind on flame projections is not taken into account and this is the case for the spatial separation

tables used in most other countries. As reported by McGuire (1965) the St.Lawrence Bums, which were the basis for the Canadian regulations, indicated that wind direction and speed had a significant effect on the radiation received outside the building. The experiments were carried out in windy conditions with wind speeds of up to 22 km/hr. It was found that the radiation levels on the leeward of a buildingwere, in general, much greater than those on the windward side. In spite of this, the Canadian regulations do not include the effects of wind in the derivation of their tables.

The effect of wind is difficult to generalise. If the building has a through draught, flames projecting out of the openings on the leeward side will be longer but possibly cooler. For wind parallel to the wall, the flames will be deflected along the wall thereby reducing the forward projection and again causing cooling.

Law (1968) reported on small scale tests in which air was blown into 0.5 m³ compartments containing burning wood cribs. It was concluded from the model tests that burning rates would differ by less than 70% for wind speeds of up 29 km/hr. Law concluded that the large volumes of received radiation recorded in the St.Lawrence Bums may have been the result of through draughts in the Canadian buildings which typically had fewer internal walls. To support this conclusion, she reported on full scale house fire tests carried out in 1949 where there was a marked increase in flames out of the leeward windows once the internal partitions had collapsed. This did not occur until very late in the fire tests.

Although high winds may promote spread of fire by transporting flaming brands for some distance from the original fire, this aspect of fire spread is not considered as part of this report. Because of the difficulty in generalising the effects of wind on flame projection, flame temperature and compartment temperature, it is not considered that the potential effects need be included in standard tables designed for generalised use throughout the country. The allowance of 0.5 m and 1.0 mfor flame projection proposed in Section 3.1 above would cater for the effect of wind to some extent. Although the flame projection

may get greater once internal partitions have collapsed and a through draught develops, this is likely to occur very late in the fire at which time the Fire Service should have intervened in most urban situations.

35 TRANSMISSIVITY

Transmissivity is also known as absorption and is normally given a value between 0 and 1. It represents the partial attenuation of the radiation energy by absorption while travelling between the source and the receiver. The absorption can take place in the atmosphere, water spray or in building materials such as glass. Although there are methods for calculating the transmissivity through all of these media, this would come under realms of specific fire engineering design and is beyond the scope of the Acceptable Solutions.

It should be noted that atmospheric absorption increases with increasing relative humidity of the air. Under normal circumstances, there is a less than 10% decrease in received radiation for separation distances up to 20 m and therefore it is normal practice to assume a value of 1.0 for transmissivity.

3.6 FIRE SERVICE INTERVENTION

As described in Section 1.5, the majority of overseas codes reviewed derived their requiredseparation distances on the basis that the fire service would attend within a short period (under 10 minutes) and begin wetting down adjacent buildings that might be at risk. This is also true of the Acceptable Solutions, although it is not stated anywhere in the document.

As the vast majority of cases where radiant ignition of adjacent property may occur will be in urban built up areas, it can be expected that the New Zealand Fire Service will be in attendance within 10 minutes. Therefore it would appear reasonable to continue to allow for this in establishing revised separation distances.

CHAPTER 4: SPECIFICATION OF CRITICAL SEPARATION DISTANCES

4.1 MIRROR IMAGE CONCEPT

The Building Code Acceptable Solutions, like most other countries, specify boundary separation distances in the tables. This is on the basis that the boundary distance is half the separation distance at which the received radiation would be 12.6 kW/m². This is known as the "mirror image" concept. The supposition is that two similar buildings, one the mirror image of the other, are placed equidistant either side of the property boundary such that the distance between them is the correct separation to limit the received radiation on either to 12.6 kW/m².

However, in practice, when a new building is being designed the position and nature of any potentially exposed neighbouring building may not be known. If a neighbouring building does exist, it is most unlikely that it will be mirror image of the proposed building and has the same boundary separation. There is always the possibility that any existing building may be demolished and a building with totally different radiation characteristics and boundary separation may be constructed. In these circumstances, it is not considered appropriate that the actions of a neighbour should require an owner to upgrade his own building.

In Law's original paper (1963) on which the British and hence the New Zealand separation tables are based, she discussed the problem and admits that for dissimilar buildings the mirror image concept may result in received radiation intensities greater than the limiting criteria.

4.2 EXAMPLE OF MIRROR IMAGE CONCEPT RESULTING IN A DANGEROUS SITUATION

As an example of the problems that may occur, consider the situation shown in Figure 4.1.

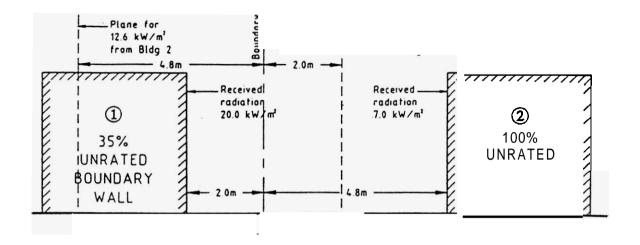


Figure 4.1: Mirror Image Concept

Building 1 is erected initially and is 4 m high by 15m long. The wall adjacent to the boundary is predominantly of concrete blocks but selected panels, uniformly distributed along the length, are of timber framing with cedar shingles. These unrated areas amount to 35% of the wall area. From the spreadsheet analysis given in Appendix D a boundary separation of 2 m would be required to comply with the Acceptable Solutions. Subsequently, a building is built on the neighbouring property of similar size but, in this case, the wall facing the boundary is completely unrated. In order to comply with the mirror image concept, this building must be located 4.8 m from the property boundary. The final configuration results in a total separation between the two buildings of 6.8m. From the FIRECALC analysis given in Appendix D, it can be seen that if Building 1 is on fire the radiation received on Building 2 is only 7.0 kW/m². However, if Building 2 burns, the incident radiation on Building 1 is 20.0 kW/m², which is substantially more than the limiting value of 12.6 kW/m² assumed by the Acceptable Solutions.

In her paper, Law suggests that the onlyway to ensure that all possible situations are made safe is to limit the radiation at the boundary to 12.6kW/m². Law rejects this idea as being overly conservative and likely to result in either large amounts

of wasted land or much higher building costs to provide fire rated walls. In a private communication, Law (1998) advised that the mirror image concept was adopted because under the British regulatory system the design of a building on one lot could not be legally made dependent on the location of a building on another property. In practice it had been found that the mirror image concept generally followed the "swings and roundabouts" principle.

4.3 LIMITING DISTANCE CONCEPT

In spite of the wide use of the mirror image concept, the example above illustrates that it is relatively easy to produce situations where the received radiation on a building is substantially higher than the accepted limits and the difference would have been substantially more if the buildings were of different sizes as well as different configurations. In most countries, the building regulations stipulate a minimum boundary separation below which boundary walks are not permitted to have unrated openings and the claddings are to be incombustible. In New Zealand this limiting distance is 1.0 m. If any building is constructed on an adjacent property closer than this distance to the common boundary. it can be assumed that the wall will have a fire resistance rating of at least 30 minutes and will be rated from both sides. As such, it can be taken that these walls would withstand a much higher incident radiation than the present critical values used in determining the separation tables. However, at distances greater than 10 m, parts or all of the boundary wall may be non fire rated and have a combustible cladding. As the owner of one property has no right impose limitations on the manner or form of construction on a neighbouring property (provided such building complies with the Building Code) there is no way of determining where nonfire rated openings may occur. Therefore it would appear logical to take this limiting distance of 1.0 m as being the point at which the limiting incident radiation must not be exceeded.

If this approach is used for the example quoted in Appendix D of two buildings 4 m high by 15 m long, Building 1 with a boundary separation of 2.0 m would be allowed to have only 28% of the wall face area unrated while the adjacent

Building 2 located 4.8 m from the boundary could only have 52% of its wall area unrated. This is illustrated in Figure 4.2. (Note that no allowance has been made for flame projection in this example.) Conversely, if the amounts of unrated wall area were to remain the same as the first example, the boundary separation distances would have to increase to 3.0 m and 8.6 m respectively. In all cases the incident radiation on the faces of both buildings is less than the critical value.

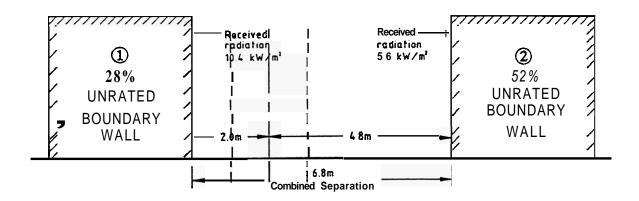


Figure 4.2 Limiting Distance Concept

44 RECOMMENDED CHANGE

As stated by Law, the mirror image method has not led to a significant number of failures in the past on the basis that neighbouring buildings are as likely to be built outside the critical distance as inside it. However, in the modern market where commercial pressures require as much building as possible for the least cost, it is far more likely that buildings will be constructed as close as possible to boundaries with the minimum possible fire ratings. It is considered that on the basis of soundfire engineering principles the limiting distance concept should be adopted based on the 1.0 m boundary separation limitation for unrated openings used in the present Building Code Acceptable Solutions, even though this may result in increased boundary distances or decreases in allowable proportions of non rated wall area. If this proves to be a major economic disadvantage, a possible increase in the 1.0 m limitation to say 1.5 m could be considered.

CHAPTER 5: CRITICAL RECEIVED RADIATION

5.1 WHAT IS DAMAGE?

The functional requirements of Clause 3.2.1 of the New Zealand Building Code requires that:

"Buildings shall be provided with safeguards against fire spread so that:

"...... adjacent household units and other property are protected from damage."

However, "damage" is not defined anywhere in the Building Code. As can be seen in the photographs given in Section 1.6.1 of this report, damage can range from blistered paintwork, cracked windows and melted PVC downpipes up to charred and ignited exterior cladding.

The NewZealand Building Code Acceptable Solutions consider critical radiation to be that which would cause piloted ignition of timber. Piloted ignition is used as it is generally considered that although flaming brands are unlikely to ignite an adjacent wall directly, it is very likely that small burning embers will occur which will ignite the combustible volatiles that are driven off heated cladding materials. Most other countries use the same criterion. The rationale behind this would appear to be that if ignition of the exterior of an adjacent building occurs it could lead to partial or total loss of this building and potentially increase the risk of fire spread to further buildings because of the increased fire size. The life safety of the occupants of the adjacent buildings could also be compromised.

Minor damage such as blistered paint, minor charring, cracked windows and melted guttering can be relatively easily and cheaply repaired. Major charring and potential ignition of cladding could lead to substantial repair costs if the adjacent building becomes fully involved and also there may be an increased risk

★ loss of life if occupants of a neighbouring building are not given adequate warning.

One potential risk that has been suggested as a design criterion is the ignition of curtaining or other material on the inside of a window in the adjacent building. It is not considered that this is a limiting case. If the glass of a window remains in place the material can only catch fire through spontaneous ignition as no embers will be present to act as an initiator. Generally spontaneous ignition occurs at much higher values of received radiation - usually in excess of 20 kW/m². Under normal circumstances it is unlikely that the glass in a window of an adjacent building will fall out even if the pane has been cracked due to the effect of an adjacent fire. This would seem to be borne out by observations of actual fires by the author, even though this is admittedly only a small sample.

Based on the above, it is considered that prevention of piloted ignition of the exterior cladding should still be regarded as the criterion for preventing damage of adjacent buildings.

5.2 IGNITION DUE TO RADIANT HEATING

The processes involved in the heating **c** solids by radiant energy are numerous and complex. To derive expressions for the rise in surface temperature it is necessary to consider reradiation from the heated surface, conduction through the solid, radiation from the rear face and convective cooling from both faces. The theory of the process is covered in detail by Drysdale (1985) and by Kanury (1995) and it is not proposed to reproduce this analysis here. It is sufficient to say that with major simplifying assumptions being made, it is possible to produce one dimensional mathematical solutions for the rise of temperate of a surface due to radiant heating. Both Drysdale and Kanury stress that, because of the simplifications made, great care is required in applying any of the mathematical expressions. Because of the complexities involved, a great deal of research has gone into establishing critical radiant heat fluxes for various materials by conducting laboratory tests.

The tests generally consist of subjecting a sample of material to a constant heat flux from a radiant heater and establishing the time and/or temperature at which ignition of the material takes place. In considering the ignition, two situations must be considered - piloted ignition and spontaneous ignition. For piloted ignition the test involves the introduction of a spark close to the surface of the material to ignite the combustible gases that are being driven off from the material by the elevated temperature. For spontaneous ignition, the combustion gases may ignite spontaneously if the gas/air mixture reaches a sufficiently high temperature. This requires a much higher heat flux than piloted ignition. In real life, the only time when spontaneous ignition could be guaranteed is if the heated material is behind a barrier that will not allow burning embers close to the material. For example this could be a curtain inside a window. The most likely situation that could occur when considering fire spread between buildings is the piloted ignition of a combustible wall cladding and this is the design criterion that is invariably used.

5.3 EXTERNAL CLADDINGS TO BE CONSIDERED

In New Zealand at the present time, there are a considerable number of variations in possible external claddings. These include timber, **PVC**, fibrous cement panels, masonry and plaster over either fibrous cement or rigid polystyrene. Apart from the timber and **PVC** the other products are either non combustible **or** require exposure to a very high radiant heat flux for a prolonged period before piloted ignition will take place.

The Building Research Association of New Zealand has carried out tests on typical exterior claddingmaterials to determine the relative performance in regard to flame spread up the exterior of a building. The results of the tests and a proposed revised method of classifying the claddings has been reported by Wade (1995) and Cowles and Wade (1998). The testing involved exposing samples of the various claddings to a radiant flux of 50kW/m² for 15 minutes with a sparker present in a cone calorimeter and measuring the time to ignition, peak

heat release rate and total heat released. The results for time to ignition are shown in Table 5.1.

Generic Description		
Exterior Insulation and Finish System Fibre-cement board Fibrecement board Metal sheet Plaster Plaster PVC Timber Timber Hardboard WB Fibre-cement board	Insulciad Hardiflex Brown Hardiplank Brown Nu-Wall Multiplast Insulcote Duraplast Superclad Pine Brown Acrylic Shadowclad Weathertex Brown Hardiflex White Hardiplank White Pine White Acrylic Weathertex White	77 86 82 98 130 84 28 15 18 23 134 66 15 65

Table 5.1: Time to Ignition for 50 kW/m² Radiant Flux

As can be seen, only the PVC had an ignition time close to the various timber products. Testing by the manufacturers indicates that the ignition point of PVC is in the order of 480°C compared to the 350°C quoted by Drysdale for piloted ignition of wood. The one failing of the PVC is that it will distort at a very low temperature of around 50°C. However, based on the damage criterion proposed in Section 5.1, this distortion would not be regarded as a design criterion for specifying building separations.

Thus it is considered that the piloted ignition of timber should continue to be regarded as the design criterion for specifying building separations.

5.4 IGNITION OF TIMBER CLADDING

In the paper by Law (1963) on which the British regulations and hence the Acceptable Solutions are based, she states that piloted ignition of oven dried

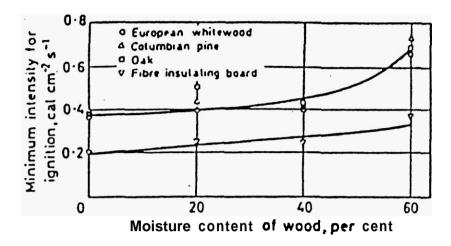
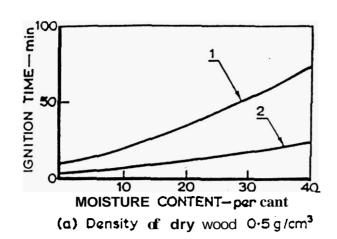
wood only occurs with intensities above 12.6 kW/m² for heating times in the order of ten minutes or more. She states that in practice exterior timber will always contain some moisture which will have the effect of raising the minimum intensity at which piloted ignition will occur. In addition, painted timber will also require a higher ignition intensity. She states that the figure of 12.6 kW/m² "errs on the side of safety".

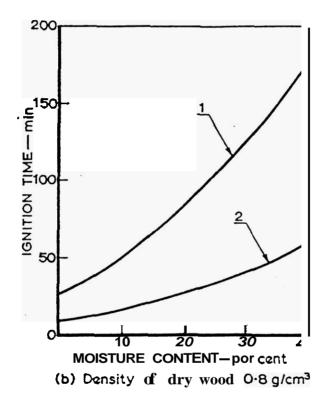
In later work with Simms (1977). Law carried out experiments to specifically investigate the effects of moisture content on the radiant ignition of timber. A large number of experiments were carried out using **a** range of timber species, sizes and moisture contents. The effects of moisture content on both piloted and spontaneous ignition were investigated. The results of some of the experiments relating **to** piloted ignition are shown in Table 5.2.

Wood	Density kg/m³	Thickness mm	Moisture Content %	Range of intensities kW/m²	Range of ignition Times (sec)
Oak	660	13	Dry 20 40	15.9-20.9 23 24 .7-27.2	415-140 605 635-530
	800	19	Dry 20 40	15.9-16.7 20.9-23.0 17.1-18.8	1260-1115 1020-630 2580-2020
Columbian Pine	460	13	Dry 20 40	19.2-20.9 22.6-23. 0 26.3-29.3	430-160 460-500 310-140
	770	19	⊉∂y 20 40	16.3-16.7 18.0-18.8 16.3-17.1	21 30-1440 1940-1770 3540-2230
European Whitewood	460	13	Dry 20 40	18.8-20.9 21.7-25.1 23.8-25.1	240-180 610-370 550-260
		19	Dry 20 40	15.5-16.3 16.7-21.7 17.6-20.9	2380-1520 1800-300 1520-530

Table 5.2: Result of Experiments investigating the Effect of Moisture Content on Radiant Piloted Ignition (Law *and* Simms)

The results were **converted** into a graphical form showing how the minimum radiant intensities vaned with moisture content as shown in Figure 5.1.


Figure 51: Minimum Intensity of Radiation for Piloted Ignition

The experiments showed that the effect of moisture in timber was to increase the ignition time, the total ignition energy and the minimum intensity for both spontaneous and piloted ignition. The report noted that based on the extensive testing done, the lowest value at which piloted ignition of dry timber was likely to occur was 14.6 kW/m². At the lowest likely moisture content of 10% for external timber, ten minutes of exposure to a flux of 16.7 kW/m² would be required before piloted ignition took place. Thus the conclusions of the report stated that there was an "amply safe margin" in the choice of 12.6 kW/m² as the maximum acceptable level of received radiation for the Building Regulations.

In her later Fire Research Technical Paper No.20, Law (1968) presented the results in a different graphical form as shown in Figure 5.2.

In this paper Law states that for a typical moisture content of 15%, timber with a density of 800 kg/m² would take about 65 minutes to ignite under a constant heat flux of 15.9 kW/m² and 27 minutes for a flux of 18.4 kW/m². She pointed out that the peakconstant flux is not likely to occur until at least 10 minutes after the start of a fire.

1. Incident intensity 0.38 cal cm $^{-2}$ s $^{-1}$ 2 Incident intensity 0.44 cal cm $^{-2}$ s $^{-1}$

Figure 52: Relationship between IgnitionTime and Moisture Content for Timber

The effect of various environmental conditions on the ignition of timber has been investigated by a number of researchers. Atreya has carried out experiments on many aspect of the problem and in conjunction with Abu-Zaid (1991) investigated the effects of moisture content, wind speed and Q concentration on piloted ignition. Following earlier work (1985) which showed that piloted ignition parameters were not affected by the sample orientation, ie. vertical or horizontal, numerous tests were carried out on horizontal samples of Douglas Fir subjected

to radiant heat. The tests showed that the moisture content had a significant effect on the piloted ignition σ timber with the ignition time increasing with higher moisture content and the surface temperature and ignition flux also being higher. In the testing, the minimum heat flux at which piloted ignition occurred, even for dry timber, was 17.5 kW/m², as seen in Figure 5.3

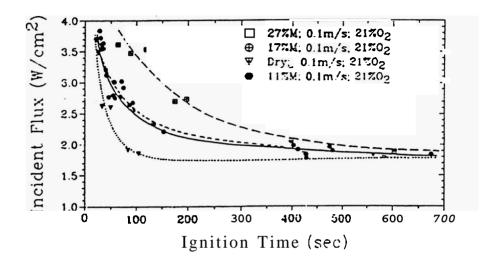


Figure 5.3: Effect of Moisture Content on Ignition (Atreya)

The paper points out that at low incident heat fluxes the curves for the different moisture contents tend towards the same asymptote. This is because the timber heats slowly and the moisture is driven off prior to ignition. This drying out absorbs some of the heat energy which would normally go into heating of the timber and hence the time to ignition is significantly increased.

By correlating the results of similar work for a variety of timber species, Janssens (1991) derived a simplified thermal model for piloted ignition. Cone calorimeter tests were used to establish the parameters in the formula:-

$$q = c_{cr} \left[1 + 0.73 \left(\frac{k\rho c}{h^2_{ig} t_{ig}} \right)^{0.547} \right]$$

For oven dry timber, the parameters shown in Table 5.3 were established.

Species	T _{ia} (°C)_	_q" _{cr} (kW.m ⁻²)_	h _{ia} (W.m ⁻² .K ⁻¹)	kpc(kJ ² .m ⁻⁴ .K ⁻² .s)
Western Red Cedar	354	13.3	34.9	0.087
Redwood	364	14.0	35.9	0.141
Radiata Pine	349	12.9	34.6	0.156
Douglas Fir	350	13.0	34.6	0.158
Victorian Ash	31∎	10.4	31.5	0.260
Blackbutt	300	9.7	30.6	0.393

Table 5.3: Parameters for Janssens Thermal Model

In a PhD thesis, Janssens (1991)extended the earlier work to investigate the effect of moisture content on his model. He concluded that the ignition temperature (T_{ig}) increases by about 2°C for every 1% increase in *moisture* content. For Radiata Pine the parameters that were derived are shown in Table 5.4.

Moisture Content (%)	T _{ig} (°C)	h _{ig} (W/m²-K)	વ _લ (kW/m²)	kρc (kJ²-s/m⁴-k²)
0	349	36.6	13.7	0.156
5	359	37.4	14.4	0.198
10	369	38.2	15.2	0.240
15	379	39.1	16.0	0.281
20	389	40.0	16.8	0.323

Table 5.4: Parameters for Radiata Pine for Varying Moisture Content

Using these parameters in the formula derived earlier, it is possible to calculate the heat **flux** for a range of ignition times. The results are **shown** in Figure **5.4.**

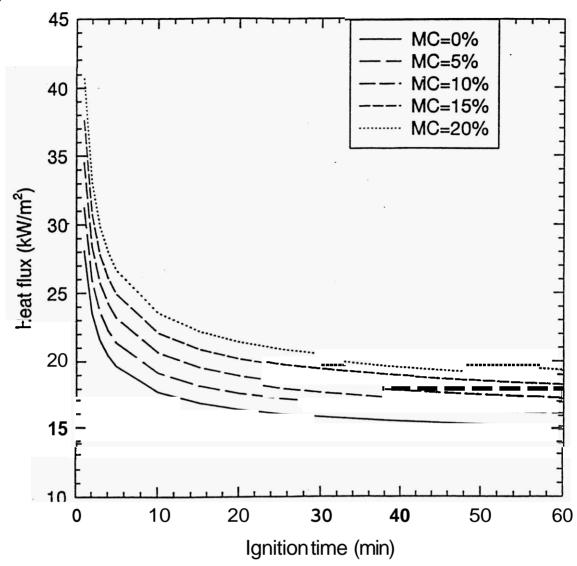


Figure 5.4 Piloted Ignition of Radiata Pine (Janssens)

From this graph it can be seen that the minimum heat flux that may be expected to cause piloted ignition for dry timber is in the order of $15 \, \text{kW/m}^2$ and for pine with a 15% moisture content a minimum flux of $18 \, \text{kW/m}^2$ may be expected for the durations we are concerned with.

In recent communications (Janssens (1999) confirmed that his work showed that the critical heat flux is directly related to the ignition temperature and hence increases with moisture content. **He** pointed out that using surface temperature as a criterion for ignition is an engineering approximation as, in reality, ignition is dependent on the mass **flux** of the volatiles being driven off the timber. The mass flux must be sufficient to create a flammable moisture in the gas phase and

this is referred to as the critical mass flux. Moisture being driven from the timber dilutes the combustible volatiles and a higher mass flux is required for ignition, hence higher surface temperature and critical flux values.

The critical flux is determined on the basis of an extrapolation for an infinite exposure time when, in reality, exposure times rarely exceed an hour and are often less than 20 minutes. On this basis Janssens agreed that using a higher critical flux to account for moisture content was justified.

In more recent work in Australia, Moghtaderi et al (1997) derived a slightly different correlation based on cone calorimetertests on samples of Radiata Pine and three native Australian wood species. Their expression was:

$$q'' = \left[\left(\frac{\pi}{4} k \rho c \right)^{2} \theta_{ig} \right] t_{ig}^{-2}$$

The power factors used are not too different to that of Janssens and as may be expected, the graph of their experimental results **shown** in Figure 5.5 is a similar shape to that of Janssens' correlation shown in Figure 5.4.

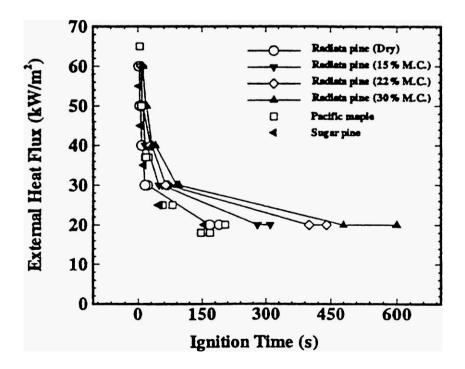


Figure 5.5: Heat Flux and Ignition Times for Varying Moisture Content

5.5 PROPOSED NEW CRITICAL RADIATION LIMITS

Based on the work by the various researchers reviewed in Section 5.4, it is clear that the present received radiation limit of 12.6 kW/m² is conservative. Even allowing for only a low moisture content it would appear that a value **c** 16kW/m² could be justified for the longer duration, higher intensity fires of Fire Hazard Categories 3 and 4. For the shorter fires of Fire Hazard Categories 1 and 2 the peak emitted radiation is lower and the exposure time is less, so it is considered that a critical received radiation limit of 17kW/m² would be applicable to these.

Prolonged exposure to the proposed levels of radiation will eventually cause piloted ignition but the ignition time will be extended. For both situations the limits do not allow for the time dependent nature **d** the radiation from a real fire, which would tend to increase the time to ignition even further.

At the radiation limits proposed the time to ignition for real situations will be significantly longer than the standard Fire Service response time so there will be additional safeguards against piloted ignition **d** neighbouring buildings.

CHAPTER 6: CONCLUSIONS

6.1 REQUIREMENTS FOR CHANGE

As detailed in Chapter 1, the boundary separations of the present Acceptable Solutions are similar to the prescriptive requirements of a number of overseas countries. To date there have been only a few instances, generally of a minor nature, where a building tire has caused damage to adjacent buildings. However with the present emphasis on more closely packed urbanisation and owners' wishes for maximum window area in external walls and maximum site coverage, it is considered that there is a probability of increased risk in the future.

As the NewZealand Building Code is a performance based code it is considered that boundary separation requirements should be based on sound fire engineering principles and current research. This is especially true when specific tire engineering designs are proposed as alternatives to the Acceptable Solutions, but the Acceptable Solutions are not to the same level of rigorousness. Based on the research detailed in the preceding chapters, it is apparent that there is scope to modify the parameters used to produce the boundary separation tables of the present Acceptable Solutions.

6.2 EMITTED RADIATION

From the review in Chapter 2 of alternative methods of establishing emitted radiation it is concluded that, as is done in the present Acceptable Solutions, specifying the radiation values to be used is the most appropriate method. However, the present two levels of emitted radiation are considered too coarse and it is proposed that four levels be used corresponding to the four fire hazard categories used in the present Acceptable Solutions.

6.3 RADIATION TRANSFER

In Chapter 3 the various parameters affecting heat radiation transfer between buildings are reviewed and in most instances the existing parameters are considered to be acceptable. The exception is the inclusion of flame projection in the separation distances. A number of the research papers reviewed indicate that flame projection out of openings can have a significant effect of the level of radiation received on an adjacent building. It is considered that some allowance for the effect of flame projection should be included in any revised boundary separation tables.

It is significant to note that most of the overseas codes specifically state that the separation distances are based on the assumption that there will be Fire Service intervention within a short period, usually under 10 minutes. If this intervention cannot be guaranteed, the overseas **codes** require the separation distances to be doubled, or in some cases tripled. This requirement for Fire Service intervention is not stated in the present Acceptable Solutions although it is implicit in the values that have been determined.

6.4 BUILDING SEPARATIONS

The boundary separations of the present Acceptable Solutions, like those of most other countries, are based on a mirror image concept where it is assumed that any receiving building is a mirror image of the building being designed. Chapter 4 gives examples of how this approach can easily lead to unsafe conditions. However, as the Acceptable Solutions specify a boundary distance within which a neighbouring building must be fire rated, design to this "limiting distance" would maintain safe conditions in all cases.

6.5 RECEIVED RADIATION

Chapter 5 discusses the type of damage to be considered in the design criteria and the external claddings that may be critical.

It is concluded that the criteria used in the present tables, ie. piloted ignition of external timber cladding, should continue to be used as the **critical** design case. However it is considered that the present value of 12.6 kW/m² is conservative and can be increased.

CHAPTER 7: RECOMMENDATIONS

7. ■ GENERAL

Based on the conclusions outlined in Chapter 6 it is proposed that revised boundary separation tables be prepared incorporating the alterations to the design parameters detailed in the following sections.

7.2 EMITTED RADIATION LEVELS

As discussed in Section 2.12, it is proposed that four levels of emitted radiation be incorporated in the new separation tables. The values proposed are based on the required fire resistance ratings of the typical compartments in each of the fire hazard categories and are determined from the temperatures obtained from the ISO 834 standard fire curve for each fire duration. The proposed values are 85 kW/m², 125 kW/m², 150 kW/m² and 175 kW/m² for Fire Hazard Categories 1 to 4 respectively.

7.3 FLAME PROJECTION

Based on experimental results, a number of overseas codes include an allowance of between 1.2 m and 1.5 m for flame projection. However as there have not been significant problems in New Zealand to date and because of the varying effect of flames, it is proposed that smaller allowances be used in the amended tables. For Fire Hazard Categories 1 and 2 a flame project of 0.5 m is proposed while for Fire Hazard Categories 3 and 4 the allowance is increased to 1.0 m.

7.4 FIRE SERVICE INTERVENTION

Any new boundary separation tables should continue to be based on the premise that the Fire Service will attend the fire within a relatively short period, say under 10 minutes, and being wetting down any neighbouring building that is at risk.

Howeverthis assumption should be explicitly stated in the notes of the tables with the rider that if this is not possible to guarantee, the separation distances given must be doubled.

7.5 BUILDING SEPARATIONS

In order to ensure that critical radiation limits are not exceed as a result of dissimilar faces on adjacent buildings or differences in construction timing, it is proposed that the "limiting distance" concept be incorporated in the tables. As the Acceptable Solutions specify a 1.0 m boundary distance within which a neighbouring building must be fire rated, it is proposed that this "limiting distance" be used to establish the minimum building separations and hence the required boundary separation for the building being designed. This proposal is probably the most significant of all of the suggested changes in this report as it can substantially increase the required boundary separation.

7.6 VALUES FOR CRITICAL RADIATION

As discussed in Chapter 5 a number of overseas researchers have concluded that the critical radiation value for piloted ignition of timber is increased by the present of moisture in the timber.

Based on this overseas research, received radiation values of 17 kW/m² for Fire Hazard Categories 1 and 2 and 16kW/m² for Fire Hazard Categories 3 and 4 are recommended.

7.7 PROPOSED SEPARATION TABLES

The proposeddesign parameters on which the separation tables are to be based are given in Table 7.1, together with the existing parameters.

Case	Emitted Radiation (kW/m²)	Flame Projection (m)	Limiting Radiation (kW/m²)	Limiting Distance (m)
Old moderate	a4	0	12.6	Mirror image
Old high	168	o	12.6	Mirror image
New FHC1	85	0.5	17.0	1.0
New FHC2	125	0.5	17.0	1.0
New FHC3	150	1.0	16.0	1.0
New FHC4	175	1.0	16.0	1.0

Table 7.1: Boundary Separation Parameters

Using these parameters, the example buildings considered in Appendix A for 100% unrated walls are reanalysed in Appendix E and the change in separation requirements are given in Table 7.2

Fire Hazard Category	Wall Size	Present Boundary Separation (m)	New Boundary Separation (m)	Present Building Separation (m)	New Building Separation (m)
1	3 x 1 2	3.65	5.5	7.3	6.5
2	3x40	4.75	9.9	9.5	10.9
3	6x12	8.30	13.6	16.6	14.6
4	6 x 30	12.40	22.0	24.8	23.0

Table 7.2: Example Boundary and Building Separations

As illustrated in the table, the new boundary separations are significantly greater than under the existing Acceptable Solutions. However, the last two columns of the table compare the actual building separations that are assumed in the two approaches. In the mirror image method of the present tables the building separation is twice the boundary separation. For the limiting distance approach the building separation is the boundary separation plus the limiting distance of 1.0 m used in the present Acceptable Solutions. As can be seen, the building

separations are comparable and in three of the four examples the new ones are in fact less than under the present system. With the proposed tables all situations will be safe, whereas the mirror image approach can result in situations where the limiting radiation is exceeded to a significant degree.

To check the general effect of the revised parameters new separation tables for the Fire Hazard Categories have been produced and are given in Appendix E. Using these tables and tables for the existing parameters also given in Appendix E, the separation requirements for unrated 3 m high walls of various lengths have been determined and are given in Table 7.3 and illustrated in Figure 7.1.

Wall Length (m)	Existing FHC1 and 2	Existing FHC3 and 4	New FHC1	New FHC2	New FHC3	New FHC4
2	1.75	2.5	2.5	3.0	4.0	4.5
4	2.50	3.5	3.5	4.5	6.0	7.0
6	3.00	4.5	4.5	5.5	7.0	8.0
8	3.50	5.0	5.5	6.5	8.0	9.0
10	3.50	6.0	5.5	7.5	9.0	10.0
12	4.00	6.0	5.5	7.5	10.0	12.0
14	4.00	7.0	6.5	8.5	10.0	12.0
16	4.50	7.0	6.5	8.5	12.0	12.0
18	4.50	7.0	6.5	8.5	12.0	12.0
20	4.50	7.0	6.5	9.5	12.0	14.0

Table 7.3: Boundary Separations for 3 m High Unrated Walls

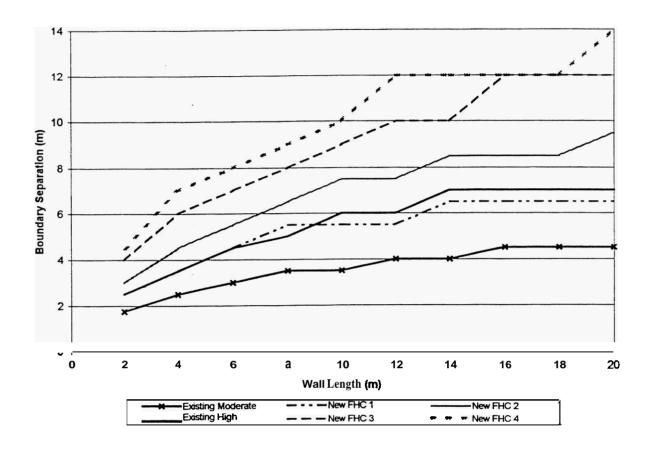


Figure 7.1: Comparison of Boundary Separations using Existing and Proposed Tables

7.8 POTENTIAL AREAS FOR FURTHER CONSIDERATION OR RESEARCH

As can be seen from Figure 1, the new separation requirements are a significant increase over those of the existing solutions. This is likely to cause significant resistance to any changes to the existing values, but all of the proposed parameters have been chosen for valid reasons and are based on verified published research material.

However, there is scope for additional research in some areas which may lead to a reduction in the separation requirements established in this report. These areas for possible future research are:-

(a) Emissivity

By reviewing the radiation emitted from actual building fires, it may be possible to justify an overall design value for emissivity $\mathbf{c} < 1.0$.

(b) Flame Projection

From either experimental or more extensive literature research the nominal, but still significant, values assumed in this report could be either verified or discounted.

(c) Limiting Distance

The limiting distance of 1.0 m of the present Acceptable Solutions has the most significant impact on the new tables. A review of the construction cost savings resulting from an increase in this distance to 1.5 m or even 2.0 m compared to the increased costs for building within the limiting distance may indicate that an increase is justified. As well, consideration of differing conditions for residential properties compared with commercial or industrial buildings may be fruitful.

(d) Fire Service intervention

As has been stated, the separation tables assume that there will be intervention to protect adjacent properties within 10 minutes. Although the effect is not enumerated, it is included as a defacto safety factor. If such an assumption is made defacto and due allowance is made in cases where it cannot be complied with, it may be overly conservative to design for emitted radiation values resulting from 90 minutes and 120 minute tires. From a review of Fire Service operations and statistics of past fires it may be possible to place an upper limit on the emitted radiation in areas where Fire Service intervention can be guaranteed.

(e) Critical Radiation

A detailed experimental study into the values of critical radiation for piloted ignition of typical **New** Zealand timber cladding materials at relevant moisture contents may indicate possible modifications to the values proposed in this report.

(f) Radiation from Growing Fires

The research results reviewed for this report were all based on tests carried out on radiators emitting a fixed level of heat flux. For actual fires the emitted radiation will increase as the fire grows and hence the time to reach the critical radiation will be longer. In addition the effects of convective cooling and conduction into the wall framing will increase the time taken **for** piloted ignition to occur.

Experimental testing of typical wall construction under transient heating rather than fixed radiation on a small sample of timber may prove that longer periods of exposure can be justified.

When considering the recommendations of this report it must be borne in mind that in addition to pure engineering considerations any significant changes to the present tables will have considerable political and cost/benefit implications. Howeversound the engineering involved it may be overruled by either politicians or accountants.

REFERENCES:

"Effect of Sample Orientation on Piloted Ignition Atreya A, Carpentier C and and Flame Spread". Fire Safety Science Harkleroad M, 1985 Proceedings of the 1st International Symposium. (pp.97-109) "Effect of Environmental Variables on Piloted Atreya A and Abu-Zaid M, Ignition". Fire Safety Science Proceedings of the 1991 3rd International Symposium. (pp.177-186) "Building Code of Australia", 1996 Australian Building Codes Board, 1996 "A Program for Calculating Post-Flashover Fire Babrauskas V. 1979 Temperatures" NBS TN 991, Washington "A Closed-Form Approximation for Post-Flashover Babrauskas V, 1981 Compartment Fire Temperatures", Fire Safety Journal **Vol.4**, 1981 Babrauskas V and "Post-Flashover Compartment Fires; Basis of a Theoretical Model". Fire and Materials Vol.2, 1978 Williamson R B, 1978 Barnett CR. 1988 "Fire Separation between External Walls of Buildings". Fire Safety Science. Proceedings of the 2nd International Symposium. (pp.841-850) "BFD Curve -Theory", unpublished Barnett CR, 1995 Barnett CR, 1996 "Design Firesfor Structural Engineers". Proceedings of 1997 IPENZ Conference. (pp.289-295) BIA 1992 "New Zealand Building Code Handbook and Approved Documents". Building Industry Authority

BOCA, 1996	"National Building Code", 1996
Buchanan A H (editor), 1994	"Fire Engineering Design Guide". Centre for Advanced Engineering, University of Canterbury
Buchanan A H, 1998	"Modelling Post-Flashover Fires with FASTLite" Journal of Fire Protection Engineering Vol. 9, No. 3.
Buchanan A H, 1998	"Performance Based Structural Design for Fire". SFPE Conference on Performance Based Codes, Maui Hawaii 1998.
Clifton C. 1996	"Fire Models for Large Fire cells" HERA Report R 4–83
Cowles G and Wade C, 1998	"Flame Spread Classification Method for Exterior Wall claddings". BRANZ Conference Paper No 48 (1998)
CSIRO, 1993	"FIRECALC Version 2.3 Users Manual". CSIRO Division of Building Construction and Engineering
Deal S, 1993	'Technical Reference Guide for FPEF001 Version 3.2". NISTR 5486 National Institute of Standards and Technology
Dembsey N, Pagni P and Williamson R, 1995	"Compartment Fire Experiments: Comparison with Models". Fire Safety Journal No 25
Department of the Environment (UK) 1991	'The Building Regulations 1991, Section B4"
Drysdale D D, 1985	"An Introduction to Fire Dynamics". John Wiley & Sons

ECI 1995	"Eurocode 1 - Basis of design and actions on structures. Part 2-2: Actions on structures -Actions on structures exposed to fire". ENV 1991-2-2: 1995. European Committee for Standardisation, Brussells
Feasey R, 1998	'Post Flashover Design Fires" Research Project for M E degree University of Canterbury
Franssen J M et al, 1996	"Connection between Parametric Temperature or Time Curves and Equivalent time of fire exposure". International Association for Bridge and Structural Engineering Colloquium, Delft
Harada K , 1998	Personal Communication
Harada K et a l, 1998	"A Pilot Case Study of a Performance-Based Fire Safety Design Method to a Multi-Tenant Office Building" Fire Science Technology Vol 18 No 1
Howell J R , 1982	"A Catalogue d Radiation Configuration Factors"
Incropera and de Witt, 1990	"Fundamentals of Heat and Mass Transfer, 3 rd Edition"
Janssens M, 1991	"A Thermal Model for Piloted Ignition of Wood including Variable Thermophysical Properties". Fire Safety Science Proceedings of the 3 rd International Symposium. (pp. 167-176)
Janssens M, 1991	"Fundamental thermophysical characteristics of wood and their role in enclosure fire growth". PhD thesis University of Ghent, Belgium
Janssens M, 1999	Personal communication.

Kanury A, 1995	"Flaming Ignition of Solid Fuels". SFPE Handbook 2 nd Edition Chapter 2-13
Kawagoe, 1958	"Fire Behaviour in Rooms", Report No.27, Building Research Institute, Tokyo
Kawagoe K and Sekine T, 1963	"Estimation of Fire Temperature - Time Curve in Rooms". BRI Report No.11 Building Research Institute, Tokyo
Kawagoe K and Sekine T, 1964	"Estimation of Fire Temperature - Time Curve in Rooms 2 nd Report". BRI Report No 17 Building Research institute, Tokyo
Kawagoe K , 1967	"Estimation of Fire Temperature - Time Curve in Rooms 3" Report". BRI Research Paper No 29 Building Research Institute, Tokyo
Kawagoe K, 1971	'Charts for Estimating the Equivalent Fire Duration on the Standard Temperature -time Curve". BRI Research Paper No 45 Building Research Institute, Tokyo
Kirby B R et al, 1994	"Natural Fires in Large Scale Compartments". British Steel Technical, Fire Research Station Collaborative Report
Law M, 1963	"Heat Radiation from Fires and Building Separation". Fire Research Technical Paper No.5, Joint Fire Research Organization
Law M. 1968	"Radiation from Fires in a Compartment", Fire Research Technical Paper No.20, Ministry of Technology and Fire Offices Committee

Law M, 1981	"Notes on the External Fire Exposure Measured at Lehrte". Fire Safety Journal Vol.4 1981. (pp.243- 246)
Law M and O'Brien T, 1981	"Fire Safety of Bare External Structural Steel". Constrado
Law M, 1998	Personal Communication
Lie T T, 1974	"CharacteristicTemperature Curves for Various Fire Severities". Fire Technology Vol.10 No.4
Lie T T, 1979	"Calculating Resistance to Fire:. CBD-204 National Research Council of Canada
Lie T T, 1995	"Fire Temperature - Time Relations". SFPE Handbook 2 nd Edition Chapter 4-8
Lin E and Mehaffey J, 1997	"Modelling the Fire Resistance of Wood-Frame Office Buildings" Journal of Fire Sciences Vol 15
Magnusson S and Thelandersson S, 1970	"Temperature - Time Curves of Complete Process of fire Development: Theoretical Study of Wood Fuel Fires in Enclosed Spaces". Acta Polytechnica Scandinavica. Civil Engineering and Building Construction Series No 65
McGuire J H, 1965	"Fire and the Spatial Separation of Buildings" Fire Technology Vol 1 No 4 1965
McGuire J and Williams- Leir G , 1981	"Spread of Fire between Buildings". CBD-216 National Research Council of Canada

Moghtaderi B, Novozhilov V, Fletcher D F and Ken J H, 1997	"A New Correlation for Bench-scale Piloted Ignition Data of Wood". Fire Safety Journal No.20 1997
National Research Council of Canada, 1990	"National Building Code of Canada" 1990
Nelson H , Deal S, 1991	"Comparing Compartment Fires with Compartment Fire Models". IAFSS Proceedings of the Third International Symposium
New Zealand Fire Service, 1998	"Emergency Incident Statistics 1993-1997"
New Zealand Government, 1991	'The Building Act 1991", Department of Internal Affairs
New Zealand Government, 1992	'The Building Regulations 1992", Department of Internal Affairs
NFPA 1993	'National Fire Code 80A: Protection of Buildings from Exterior Fire Exposures" National Fire Protection Association
Peacock R et al, 1997	"A User's Guide for FAST 3.0: Engineering Tools for Estimating Fire Growth and Smoke Transport". NIST Special Publication
Pettersson O, Magnusson SE and Thor J, 1976	"Fire Engineering Design of Structures", Swedish Institute a Steel Construction Publication No 50
Portier R, Peacock R and Reneke P, 1996	"FASTLite: Engineering Tools for Estimating Fire Growth and Smoke Transport". NIST Special Publication 899
Quintiere. 1979	"The Spread of Fire from a Compartment - A Review". Design of Buildings for Fire Safety ASTM

STP 685

	311 003
Quintiere, 1995	"Compartment Fire Modelling", SFPE Handbook 2 nd Edition Chapter 3 - 5
Read, R E, 1991 (Editor)	"External Fire Spread: Building Separation and Boundary Distances". Building Research Establishment Report BR 187
Seigel L, 1969	"The projection of flames from burning buildings". Fire Technology Vol 5 1969
SFPE. 1995	'The SFPE Handbook of Fire Protection Engineering". 2 nd Edition, Society of Fire Protection Engineers
Shorter G W , McGuire J H, Hutcheon N B and Legget R F, 1960	The St Lawrence Burns" NFPA Quarterly Vol 53 No 4
Simms D and Law M, 1967	"The Ignition of Wet and Dry Wood by Radiation". Combustion and Flame Vol II No 5
Standards Association of New Zealand, 1988	"NZS 1900 Chapter 5: Fire Resisting Construction and Means of Egress"
Thomas G C et al, 1995	"Light Timber Framed Walls Exposed to Compartment Fires". Journal of Fire Protection Engineering Vol 7, No 1
Thomas P H and Law M, 1974	"The Projection of Flames from Buildings on Fire". Fire Prevention Science and Technology No.10 (pp.19-26)
Tien C L, Lee KY and Stretton AJ , 1995	"Radiation Heat Transfer" SFPE Handbook 2" Edition Chapter 1 - 4

Torvi D, 1998	Personal Communication	
Wade C. 1995	"Post-Flashover Fire Models - A Review". FPE 520 Term Paper Centre for Fire Safety Studies Worcester Polytechnic Institute	
Wade C, 1995	"Fire Performance of External Wall Claddings Under a Performance Based Building Code". Fire and Materials Vol 19	
Walton W D and Thomas P H 1995	"Estimating Temperatures in Compartment Fires" SFPE Handbook 2 nd Edition Chapter 3 - 6	
Wang Y, Cooke G and Moore D, 1996	"Large Compartment Fire Tests at Cardington and the Assessment of Eurocode 1" International Association for Bridge and Structural Engineering Colloquium, Delft	
Webster C and Raftery M,	"The burning of tires in rooms". Joint Fire Research Organisation Fire Research Note 401	
Williams-Leir G. 1966	"Approximations for Spatial Separation". Fire Technology Vol 2 No 2	
Williams-Leir G, 1970	"Another Approximation for Spatial Separation". Fire Technology Vol 6 No 3	
Yokoi S, 1960	"Study on the prevention of fire spread caused by hot upward current". Japanese Building Research Institute Report No 34	
Yung D and Oleszkiewicz , 1988	"Fire Spread via Exterior Walls of Buildings". Proceedings of the 4 th Conference on Building Science and Technology, Toronto 1988	

Appendix A

Verification of Boundary Separation Tables of the Acceptable Solutions

APPENDIX A

VERIFICATION OF BOUNDARY SEPARATION TABLES OF THE ACCEPTABLE SOLUTIONS

Using the design parameters given in Section 1.4, the required boundary separations for four typical wall elevations are determined from the C3 tables, manually using Margaret Law's method and from a purpose designed spreadsheet. The values of the incident radiation on a mirror image building is then checked using FIRECALC.

The four examples are:-

- (a) Single storey Childcare Centre with a 100% unratedwall 3 m high by 12 m long-Fire Hazard Category 1.
- (b) Single storey classroom block with an unrated side wall 3 m high by 40 m long Fire Hazard Category 2.
- (C) Unrated end wall 6 m high by 12 m long of a factory with Fire Hazard Category 3.
- (d) Unrated side wall 6 m high by 12 m long of a vehicle tyre retailer Fire Hazard Category 4.
- 1.0 From Appendix C of the Acceptable Solutions:-
 - (a) Enclosing rectangle $3 \text{ m} \times 12 \text{ m}$ FHC = I-boundary separation = 3.5 m
 - (b) Enclosing rectangle 3 m x 40 m FHC = 2-boundary separation = 5.0 m
 - (c) Enclosing rectangle 6 m x 12 m FHC = 3-boundary separation = 8.5 m
 - (d) Enclosing rectangle 6 m x 30 m FHC = 4-boundary separation = 12.5 m
- 2.0 The emitted radiation values used in the tables would mean that (a) and (b) are assumed *to* have a radiation intensity of 84 kW/m², while (c) and (d) would have 168 kW/m². Based on the formula **I** = εσΤ⁴ with E = 1.0 the compartment

temperatures relating to these intensities would be 830°C and 1039°C.

Using the configuration factor method detailed in the Fire Engineering Design Guide (Buchanan 1994) the radiation received on a mirror image building conforming *to* the boundary separations given above would be determined from:-

$$I_R = \phi \epsilon \sigma [(273 + T_e)^4 - (273 + T_r)^4]$$

φ is the configuration factor

E is the emissivity = 1.0

T_e is the temperature of the emitter ("C)

T, is the temperature of the receiver ("C)

For a receiver located a distance R away from a rectangular emitter:

$$\phi = \frac{1}{90} \left[\frac{x}{\sqrt{1+x^2}} \tan^{-1} \left(\frac{y}{\sqrt{1+x^2}} \right) + \frac{y}{\sqrt{1+y^2}} \tan^{-1} \left(\frac{x}{J + y^2} \right) \right]$$

Where $\mathbf{x} = H/(2R)$

y = W/(2R)

H = height of the enclosing rectangle (m)

W = width of the enclosing rectangle (m)

R = distance between the emitter and receiver (m)

(twice the boundary separation for **a** mirror image situation)

(a)
$$H = 3 \text{ m W} = 12 \text{ m R} = 7 \text{ m I}_0 = 84 \text{ kW/m}^2$$

$$x = 3/14 = 0.2143$$

$$y = 12/14 = 0.8571$$

$$\rightarrow \phi = 0.1599$$

$$\rightarrow$$
 I_R = 13.43 kW/m²

(b)
$$H = 3 \text{ m W} = 40 \text{ m R} = 10 \text{ m I}_a = 84 \text{ kW/m}^2$$

$$x = 3/20 = 0.15$$

$$y = 40/20 = 2.0$$

$$\phi = 0.1423$$
= | = 11.95 kW/m²

(c)
$$H = 6 \text{ m W} = 12 \text{ m R} = 17 \text{ m } I_e = 168 \text{ kW/m}^2$$

 $\mathbf{x} = 6/34 = 0.1765$
 $\mathbf{y} = 12/34 = 0.3529$
 $\mathbf{\Rightarrow} \mathbf{\phi} = 0.0719$
 $\mathbf{\Rightarrow} \mathbf{J} = 12.09 \text{ kW/m}^2$

(d)
$$H = 6 \text{ m} \quad W = 30 \text{ m} \quad R = 25 \text{ m} \quad I_0 = 168 \text{ kW/m}^2$$

$$x = 6/50 = 0.12$$

$$y = 30/50 = 0.60$$

$$\Rightarrow \phi = 0.0743$$

$$\Rightarrow I_R = 12.49 \text{ kW/m}^2$$

3.0 A spreadsheet has been prepared which is based on the C3 tables of the Acceptable Solutions, but which enables various parameters such as firecell temperature, emissivity, flame projection and limiting radiation to be adjusted. The exact size of the boundary wall can be entered together with the actual separation distance in order to find the proportion of fire rating required for the wall.

The **test** examples were checked using this spreadsheet, as shown on the following pages, and the required separations to achieve an incident radiation of 12.6 kW/m² are as shown below..

(a) Enclosing rectangle 3 m x 12 m

l_e = 84 kW/m² Required boundary separation = 3.65 m

(b) Enclosing rectangle 3 m x 40 m

L = 84 kW/m² Required boundary separation = 4.75 m

(c) Enclosing rectangle 6 m x 12 m

I, = 168 kW/m² Required boundary separation = 8.3 m

(d) Enclosing rectangle 6 m x 30

 $i_a = 168 \text{ kW/m}^2$ Required boundary separation = 12.45 m

- 4.0 In order to confirm these figures, the specific radiation calculations on the following pages were undertaken using the radiation module of FIRECALC. As can be seen, the analyses confirm that the separations given by the spreadsheet result in the incident radiation being 12.6kW/m² as required. Note that the initial calculation in each case is to confirm the temperature required by FIRECALC to produce an emitted radiation of 84 kW/m² and 168 kW/m².
- 5.0 Table A.I belowgives the comparison of the boundary separation obtained from the Acceptable Solutions with the separations obtained by specific design. As can be seen, both the spreadsheet and FIRECALC confirm that the parameters given in Chapter 1 will indeed produce the values of the C3 Tables of the Acceptable Solution.

Enclosing Rectangle	Fire Hazard Category	C3 Tables Boundary Separation (m)	Specific Design Boundary Separation (m)
3x12	1	3.5	3.66
3x40	2	5.0	4.76
6x12	3	8.5	6.31
6x30	4	12.5	12.44

Table A.I: Boundary Separations from **Acceptable** Solution **Tables** and **Specific** Design

Fire Engineering		30 32 34 30 32 34 15 16 17		
		28 28 14		
		26 26 13		
		2 24 2 24 1 12		
		20 22 20 11 10 11		
		18 2 18 2 1 9		
		8 8.		
		44 7		
		5 2 2 8		
		01 0		
		0 0 4.		
		80 80 4		100
	7	7 7 3.5		94
	12.6 KW/M"2	စာတာ က		76
	17.0	5 5.2.5		98
	н	4.5 4.5 2.25	Permitted unprotected area %	53
		44 0	rotected	41 47
		3.5 3.5 1.75	dun pet	14
	tion	8 E 5.	Permit	35
2d 80	Limiting Radiation	1 1.5 2 2.5 1 1.5 2 2.5 0.5 0.75 1 1.25		8
Buildin	Limitin	44 -		18 21 25 30
inklered		1.5		121
n Unspr		1 0.5		18
II Area I				
NZBC Fire Safety Annex. Appendix C. Table C3. Mirror Image concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings ile Verification		Exact Distance 7.3 7.3 3.85		tm
3C Fire Safety A wable Proportion eritication		S.∃ 		
26-Jan-89 NZBC Fire Se Alfowable Pro LOCATION: C3 Table Verification		Radiation Distance Separation Distance (Radiation + Projection) Boundary Distance	Rectangle Size H W Ae	3 17 3R

	Fire Engineering	Ε	30 32 34 30 32 34 15 16 17		
		E 0	28 4 4		
		in.	13 28		
* .		۵	24 t		
			22 =		
			22 2		
			81 8		
*		nce	9t 8		
		Flame Projection Distance	4		
		Projecti	55 0		
		Flame	5 t v		<u>8</u>
			e e 3.		94
			∞ ∞ 4		83
		2	7 7 3.5		73
		1 12.8 kW/m^2	66 6		83
		12.8	2.5 5.		ន
			4.5 4.5 2.25	בפווווומת תולותומת ביתב ע	84
			44 0	חופהופא	£3
			3.5 3.5 1.75	מל מווי	8
		ion	8 8 2.	חפווווו	8
	cept	Emissivity Limiting Radiation	25 25 125		8
	ge con Buildin	Emissivity Limiting R	7 7 7		ĸ
	inor Ime		1.5 1.5 0.75		7
	C3 - M Unspri		20		18 21
	C. Tabk				
	oendix (2	eo u		
(R)	ex. App.	и	Exact Distance 9.5 9.5 4.75		Ê
	NZBC Fire Safety Annex. Appendix C. Teble C3 - Mirror Image concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings le Verification	托	Ε		
•	Fire Sal ble Prop		= S = =0.5S =		
	NZBC Fire Se Allowable Pro C3 Table Verification		(r		
	C3 Ta	Fire Hazard Category	Radiation Distance Separation Distance (Radiation + Projection) Boundary Distance	Rectangle Size W Ae m m^2	ţ
	26-Jan-99	lazard C	Radiation Distance Separation Distance (Radiation + Projecti Boundary Distance		ę
	28÷	e ir	Radia Sepa (Radia Bount	I E	r

LOCATION: C3 Table Verification	/erification																									
FIFE HAZATO CATEGORY	Ĭ	1 JH			Limiting R	Cinissivity Limiting Radiation	lon		1 11		12.6 k	12.6 kW/m^2			-	ייים ואייטינען די טוופון	5	3								
		Exact Distance																	9				9			
Radiation Distance		16.6	•	1.5	7	2.5	က	3.5	4	4.5	2	9	7		8	10 12			₩	8	8	24	58	28	99	32 34
Separation Distance	ES	16.6	-	1.5	7	2.5	e	3.5	4	5.4	S	60	7	80			4	19	18	8	23	54	8			
Boundary Distance	=0.5S m	8.3	0.5	0.5 0.75	•	1.25	1.5	1.75	7	2.25	2.5	က	3.5	4	4.5 5	•	7	80	O.	9	Ξ	12	5	4	15 1	16 17
Rectangle Size	_						Permitt	Permitted unprotected area %	tected a	irea %																
¥																										
m m m^2																										
			'	-	(;	;	,		,	П	П	,	,	9	١	7	8	\$							
47 77		٤	*	_	3	2	-		7	c	_	_							3							

NZBC Fire Salety Annex. Appendix C. Table C3 - Mirror Image concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings Le Verification	= 4 Emissivity = 1 Limiting Radiation = 12.6 KW/m^2	Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24.8 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24.8 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 11 125 1.5 1.75 2 2.25 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11	Permitted unprotected area %	2.
ppendix C. Table C3 - Mirror Image concept rated Wall Area in Unsprinklered Buildings	4 Emissivity Limiting Radia	1 15 2 1 1.5 2 0.5 0.75 1		חר א אוא
28-Jan-99 NZBC Fire Safety Annex. At Allowable Proportions of Unr LOCATION: C3 Table Verification	Fire Hazard Category FHC =	Exact Distance 24.8 Separation Distance = S m 24.8 (Radiation + Projection) = n s c m 17.4	Rectangle Size W Ae m m^2	100 ten 11

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 830. °C Offset Size of source Opening Distance Y 2xZ 울 X ΥX 12 100 0 0 0 3

Maximum radiation flow:

84.015 kW/m² Orientation: $\Theta = 90.0^{\circ}$

 $\phi = 0.0^{\circ}$

Radiation at emitter for low tire load

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 830. °C

Distance Offset Size of source Opening

X YX ZX Y Z %

7.32 0 0 12 3 100

Maximum radiation flow:

 12.593 kW/m^2

Orientation:

 $\Theta = 90.00$

 $\phi = 0.00$

Radiation from Building (a) at specific design separation

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 830. °C Distance Offset Size of source Opening X Yx 2x Y Z x 9.52 0 0 40 3 100

Maximum radiation flow:

12.604 kW/m² Orientation:

 $\Theta = 90.0^{\circ}$

 $\phi = 0.0^{\circ}$

Radiation from Building (b) at specific design separation

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 1039 °C Opening Offset Size of source Distance Y ક Z Χ YX ZX 12 100 6 0 0 0

Maximum radiation flow:

168.106 kW/m² Orientation:

 $\Theta = 90.0^{\circ}$

 $\phi = 0.00$

Radiation from emitter for high fire load

RADIATION

at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

	Radia	tion t	temperature	1039 °C	
Distance	Off	s e t	Size of	source	Opening
X	Yx	2x	Y	Z	8
16.62	0	0	12	6	100

Maximum radiation flow:

 12.601 kW/m^2

Orientation:

 $\Theta = 90.00$

 $\phi = 0.0^{\circ}$

Radiation from Building (c)at specific design separation

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 1039 °C

Distance Offset Size of source Opening

X Yx Zx Y Z %

24.88 0 0 30 6 100

Maximum radiation flow:

12.596 kW/m^2

Orientation:

 $\Theta = 90.00$

 $\phi = 0.0^{\circ}$

Radiation from Building (d) at specific design separation

Appendix B

Comparison of Methods to Determine Compartment Temperature

APPENDIX B

COMPARISON OF METHODS TO DETERMINE COMPARTMENT TEMPERATURE

To compare the temperatures obtained using the various methods outlined in Chapter 2, the following compartment will be analysed for a range of fire loads.

Compartment: 4 m wide x 6 m long x 2.5 m high with fire rated ceiling

Ventilation: One window 2.4 m long x 1.2 m high at 800 mm from floor

Interior Lining: Equivalent to timber framed wall with 16 mm Fyreline

Fire Load 1: Studio apartment at 400 MJ/m² of floor area

Fire Load 2: Professional office at 800 MJ/m² of floor area

Fire Load 3: File room at 1200 MJ/m² of floor area

Fire Load 4: Bond store for duty free shop at 2000 MJ/m² of floor area

 $A_{\rm c} = 24 \, {\rm m}^2$

 $A_x = 2 \times 24 + 2 \times (4 + 6) \times 2.5 = 98 \text{ m}^2$

 $A_{1} = 2.88 \,\mathrm{m}^{2}$

 $JH = 1.095 \,\mathrm{m}^{14}$

 $A_w/H = 3.155 \text{ m}^{5/2}$

 $A_b/A_E = 0.0$

 $A_{W}/A_{F} = 0.12$

1.0 ACCEPTABLE SOLUTIONS

Fire Loads 1 and 2 correspond to Fire Hazard Categories 1 and 2 and therefore the emitted radiation is 84 kW/m². The Compartment temperature for this radiation would be 830°C. Fire Loads 3 and 4 are Fire Hazard Categories 3 and 4 and therefore the emitted radiation is taken as 168 kW/m². This corresponds to a compartment temperature of 1039°C.

2.0 LAW'S TEMPERATURE EQUATION

T,
$$T_a = 6000 \left(\frac{1 - e^{-0.1\eta}}{\eta^{1/3}} \right) \cdot (1 - e^{-0.05\psi})$$

Taking h_c for wood = 16MJ/kg, the fire loads are:-

$$FL1 = 25 \text{ kg/m}^2$$

$$FL2 = 50 \text{ kg/m}^2$$

FL3 =
$$75 \text{ kg/m}^2$$

$$FL4 = 125 \text{ kg/m}^2$$

$$A_1 = 98 - 2.9 = 95.1 \text{ m}^2$$

L1 =
$$25 \times 24 = 600 \text{ kg}$$

$$L2 = 1200 kg$$

$$L3 = 1800 \text{kg}$$

$$L4 = 3000 \, kg$$

$$\eta = A_t/(A_w/H) = 95.113.155 = 30.1$$

$$\psi_1$$
 = 600/(2.88 x 95.1)" = 36.25

$$\Psi_2 = 72.5$$

$$\Psi_3 = 108.75$$

$$\Psi_4 = 181.25$$

for FL1
$$T_f - T_a = 6000 (\frac{1 - e^{-3.01}}{J30.1}) \cdot (1 - e^{-1.81})$$

= 870°C

$$\Rightarrow T_{f1} = 890^{\circ}C$$

for FL2
$$T_f - T_a = 1039.7 (1-e^{-3.62})$$

= 1012°C
 $- T_{f2} = 1032$ °C

for FL3
$$T_{f} - T_{a} = 1039.7 (1-e^{-5.43})$$

= 1035°C
 $\Rightarrow T_{f3} = 1055$ °C

for FL4
$$T_f - T_a = 1039.7 (1-e^{-9.06})$$

= 1039.6
 $\Rightarrow T_{f4} = 1059.6$ °C

3.0 STANDARD FIRE CURVES

Formulae are given in the Fire Engineering Design Guide to establish the required fire rating of external walls. These formulae are empirical expressions from Eurocode 1 to establish the equivalent fire severity t_e (min) where

$$t_a = e, k, w_f$$

where e, is the fire load (MJ/m² floor area)

k, is the insulation factor given by Table B-1

w, is the ventilation factor as given below

√λρ c(J/m²Ks ^{0.5})	Typical Construction	k, (min m ^{2.3} /MJ)
<720	Insulating material	0.080
720 to <i>2500</i>	Concrete or plasterboard	0.055
>2500	Thin steel	0.045

A = thermal conductivity W/m K

 $\rho = \text{density kg/m}^3$

c = specific heat Jlkg K

Table B.I: Insulation Factor k,

The ventilation factor w, is given by:

$$\begin{aligned} w_f = & \left(\frac{6.0}{H}\right)^{0.3} \left[0.62 + \frac{90f0.4 - \alpha_v)^4}{1 + b_v \alpha_h}\right] > 0.5 \\ \text{where } \mathbf{a_r} &= A_v / A & 0.05 \le \mathbf{a_r} \le 0.25 \\ \alpha_h &= A_h / A_f & \alpha_h \le 0.20 \\ b_v &= 12.5 \left(1 + 10 \alpha_v - \alpha_v^2\right) \end{aligned}$$

A, is the floor area of the firecell (m²)

A, is the area of vertical window and door openings (m²)

A,, is the area of horizontal openings in the roof (m²) and

H is the height of the firecell (m)

These expressions have been put into a computer spread sheet and for each of the fire load examples the attached output gives the required fire ratings as

for FL1
$$S = 34 \text{ min}$$

for FL2 $S = 67 \text{ min}$
for FL3 $S = 101 \text{ min}$
for FL4 $S = 168 \text{ min}$

.. from ISO 834 equation

$$T_{f1} = 860^{\circ}C$$
 $T_{f2} = 962^{\circ}C$
 $T_{f3} = 1023^{\circ}C$
 $T_{f4} = 1099^{\circ}C$

4.0 KAWAGOE'S NOMOGRAPH

For a plasterboard wall take A = 0.5 kcai/mh°C

$$A_w/H = 3.144 \text{ m}^{5/2}$$
 $A_T = 98 \text{ m}^2$
 $A_F = 24 \text{ m}^2$
 $Fr = A_F/A_T = 0.245$
 $FO = A_w/H/A_T = 0.032$

Taking the equivalent calorific value of wood as 10.78MJ/kg in accordance with Kawagoe's paper the equivalent weights of wood are:-

FL1 =
$$400110.78 = 37.1 \text{ kg}$$

FL2 = 74.2 kg

26-Jan-99

Table 1 of C3/AS1
with variations for height and kb

Fire Engineering

LOCATION Appendix B example for FHC 1

S Rating Based On: te = ef.kb.wf (min)

Notes on Input: ef = Fire load from FHC (MJ/ m^2)

kb = Insulation factor (C3/AS1 uses 0.067)
OR Use 0.080 for insulating material
Use 0.055 for plaster board or concrete

Use 0.045 for thin steel

wf= ventilation factor based on Ah/Af & Av/Af (see Eurocode 1993 formula in Sec 6.4 of Fire Engineering Design Guide)

Firecell Height (m)				2.500		
kb				0.055		
FLED (MJ/m^2)				400		
				Ah/Af		
Av/Af	bv	- 0	0.05	0.1	0.15	0.2
0.05	18.719	56	38	31	28	26
0.06	19.955	52	35	29	26	25
0.07	21.189	48	33	28	25	24
0.08	22.420	45	30	26	24	23
0.09	23.649	42	29	25	23	22
0.10	24.875	39	27	24	22	21
0.11	26.099	36	26	23	21	21
0.12	27.320	34	24	22	21	20
0.13	28.539	31	23	21	20	20
0.14	29.755	30	22	21	20	19
0.15	30.969	28	22	20	20	19
0.16	32.180	26	21	20	19	19
0.17	33.389	25	20	19	19	19
0.18	34.595	24	20	19	19	18
0.19	35.799	23	20	19	19	18
0.20	37.000	22	19	19	18	18
0.21	38,199	21	19	18	18	18
0.22	39,395	20	19	18	18	18
0.23	40.589	20	18	18	18	18
0.24	41.780	19	18	18	18	18
0.25	42.969	19	18	18	18	18

Filename. Firechart xls

26-Jan-99

Table 1 of C3/AS1 with variations for height and kb

Fire Engineering

LOCATION Appendix B example for FHC 2

S Rating Based On: te = ef.kb.wf (min)

Notes on Input: ef = Fire load from FHC (MJ/m^2)

kb = Insulation factor (C3/AS1 uses 0.067)
OR Use 0.080 for insulating material

Use 0.055 for plaster board or concrete

Use 0.045 for thin steel

wf= ventilation factor based on Ah/Af & Av/Af (see Eumcode 1993 formula in Sec 6.4 of Fire Engineering Design Guide)

Firecell Height (m)				2.500		
kb[0,055		
FLED (MJ/m^2)				800		
				Ah/Af		
Av/Af	bv	0	0.05	0.1	0.15	0.2
0.05	18.719	113	75	62	56	52
0.06	19.955	104	70	58	53	49
0.07	21.189	97	65	55	50	47
0.08	22.420	89	61	52	48	45
0.09	23.649	83	57	50	46	44
0.10	24.875	77	54	47	44	42
0.11	26.099	72	51	46	43	41
0.12	27.320	67	49	44	42	40
0.13	28.539	63	47	43	41	40
0.14	29.755	59	45	41	40	39
0.15	30.969	56	43	40	39	38
0.16	32.180	53	42	40	38	38
0.17	33.389	50	41	39	38	37
0.18	34.595	48	40	38	37	37
0.19	35.799	45	39	38	37	37
0.20	37,000	44	38	37	37	36
0.21	38.199	42	38	37	36	36
0.22	39.395	41	37	37	36	36
0.23	40.589	40	37	36	36	36
0.24	41.780	39	37	36	36	36
0.25	42.969	38	36	36	36	36

Filename: Firechart.xds

26-Jan-99

Table 1 of C3/AS1 with variations for height and kb

Fire Engineering

LOCATION Appendix B example for FHC 3

S Rating Based On: te = ef.kb.wf (min)

Notes on Input: ef = Fire load from FHC (MJ/m^2)

kb = Insulationfactor (C3/AS1 uses 0.067)

OR Use 0.080 for insulating material

Use 0.055 for plaster board or concrete

Use 0.045 for thin steel

wf = ventilation factor based on Ah/Af & Av/Af (see Eurocode 1993 formula in Sec 6.4 of Fire Engineering Design Guide)

Firecell Height (m)				2:500		
kb				0.055		
FLED (MJ/m^2)				1200		
				Ah/Af		
Av/Af	bv	0	0.05	0.1	0.15	0.2
0.05	18.719	169	113	94	84	78
0.06	19.955	156	105	88	79	74
0.07	21.189	145	98	83	75	71
0.08	22.420	134	91	78	72	68
0.09	23.649	125	86	74	69	66
0.10	24.875	116	81	71	66	64
0.11	26.099	108	77	68	64	62
0.12	27.320	101	73	66	63	61
0.13	28.539	94	70	64	61	59
0.14	29.755	89	67	62	60	58
0.15	30.969	83	65	61	59	57
0.16	32.180	79	63	59	50	57
0.17	33.389	75	61	58	57	56
0.18	34.595	71	60	57	56	55
0.19	35.799	68	59	56	56	55
0.20	37.000	66	58	56	55	55
0.21	38.199	63	57	55	55	54
0.22	39.395	61	56	55	54	54
0.23	40.589	60	55	54	54	54
0.24	41.780	58	55	54	54	54
0.25	42.969	57	54	54	54	54

Filename:Firechart.xls

26-Jan-99

Table 1 of C3/AS1 with variations for height and kb

Fire Engineering

LOCATION Appendix B example for FHC 4

S Rating Based On: te = ef.kb.wf (min)

Notes on Input: ef = Fire load from FHC (MJ/m^2)

kb = Insulation factor (C3/AS1 uses 0.067)

OR Use 0.080 for insulating material

Use 0.055 for plaster board or concrete

Use 0.055 for plaster board or concrete

Use 0.045 for thin steel

wf = ventilation factor based on Ah/Af & Av/Af (see Eurocode 1993 formula in Sec 6.4 of Fire Engineering Design Guide)

Firecell Height (m)				2.500		
kb				0.055		
FLED (MJ/m^2)				2000		
				Ah/Af		
Av/Af -	bv	0	0.05	0.1	0.15	0.2
0.05	18.719	282	188	156	139	129
0.06	19.955	261	175	146	132	123
0.07	21.189	241	163	138	125	118
0.08	22.420	224	152	130	120	113
0.09	23.649	208	143	124	115	109
0.10	24.875	193	135	119	111	106
0.11	26.099	180	128	114	107	103
0.12	27.320	168	122	110	104	101
0.13	28.539	157	117	106	102	99
0.14	29.755	148	112	103	99	97
0.15	30.969	139	108	101	98	96
0.16	32.180	131	105	99	96	94
0.17	33.389	125	102	97	95	93
0.18	34.595	119	100	95	94	92
0.19	35.799	114	98	94	93	92
0.20	37.000	109	96	93	92	91
0.21	38.199	105	94	92	91	91
0.22	39.395	102	93	91	91	90
0.23	40.589	99	92	91	90	90
0.24	41.780	97	91	90	90	90
0.25	42.969	95	91	90	90	89

Filename: Firechart.xls

FL3 = 111.3 kg

FL4 = 185.5kg

From Kawagoe's nomograph (1967) for A = 0.5 given on the following sheet:

 $TI = 885^{\circ}C$

 $T_2 = 990^{\circ}C$

 $T3 = 1055^{\circ}C$

T4 = the fire load of 185kg is off the scale of the nomograph but the line for $F_0 = 0.03$ appears to be tending asymptotically to 1100°C.

5.0 SWEDISH CURVES

From the types of enclosures defined in the Swedish Curves the closest to this example is the Type G which has 20% of the surface as concrete and 80% **as** timber framing clad on both faces with 2 layers of 13 mm plasterboard.

Opening factor = 0.032

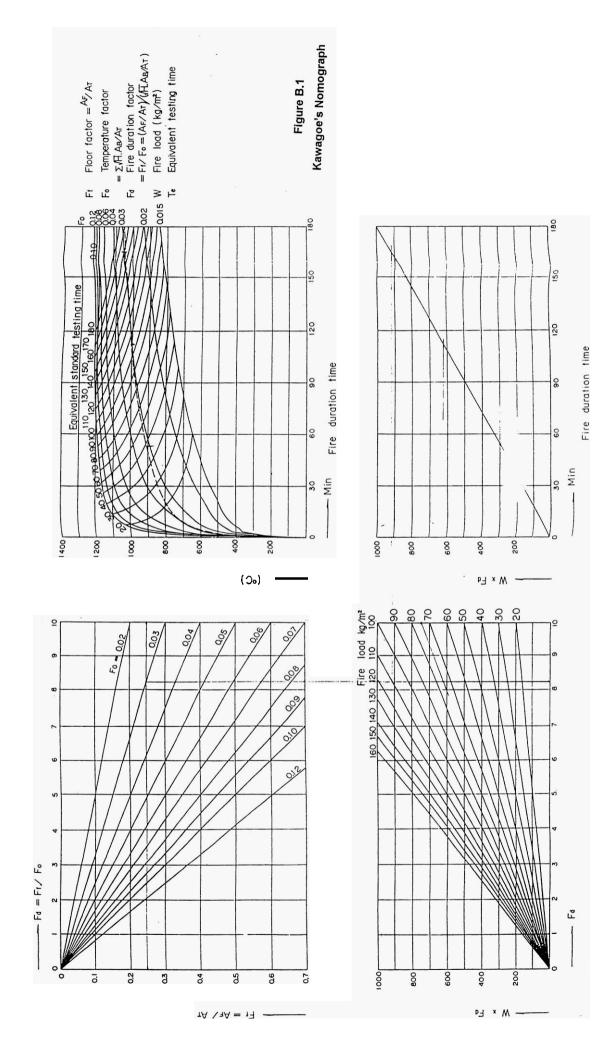
FLI = $400 \times 24/98 = 98 \text{ MJ/m}^2 = 23.4 \text{ Mcal.m}^{-2}$

 $FL2 = 46.8 \text{ Mcal.m}^{-2}$

 $FL3 = 70.2 \text{ Mcal.m}^{-2}$

 $FL4 = 117 \, Mcal.m^{-2}$

For FL1 from Graph G2 for opening factor = 0.02 T = 800°C from Graph G3 for opening factor = 0.04 T = 900°C


 \therefore Take $T_{f1} = 850^{\circ}C$

For FL2 from Graph G2 T = 880° C

from Graph G3 T = 970°C

:. Take T₁₂ = 925°C

Fig. 9 Nomogram for the estimation of fire temperature time curve and equivalent standard test time (where $\lambda=0.5~{\rm Kcal/mh}^{\circ}$ C, C=0.3 Kcal/kg°C, $\rho=2400~{\rm kg/m}^3$, W=5%, wall thickness 15 cm)

For FL3 from Graph G2 T estimated at 920°C (FL3 larger than graphed values)

From Graph G3 T = 990°C

$$\uppea$$
 Take T_{r3} = 955°C

For FL4 from graph G2 T estimated at 950°C (FL4 larger than graphed value)

From Graph G3 T = 1010°C

6.0 LIE'S SIMPLIFIED EXPRESSION

$$F = A_w H^{1/2}$$
 = 0.0322

Taking the heat release of 1 kg of wood as 2575 kcal (10.78 MJ) the fire loads in kg of wood for total enclosure area are:

 $Q_1 = 400 \times 24198110.78 = 9.09 \text{ kg/m}^2$

 $Q_2 = 18.17 \text{ kg/m}^2$

 $Q3 = 27.26 \text{ kg/m}^2$

 $Q4 = 45.44 \text{ kg/m}^2$

Using the expression of burning duration of

the peak temperatures will occur at:

$$t_1 = \frac{9.09}{330 \text{ x } 0.0322} = 0.855 \text{ hr}$$

$$t_2 = 1.71 \, hr$$

$$t_3 = 2.57 \text{ hr}$$

$$t_{4} = 4.28 \text{ hr}$$

Lie's expression is valid for:

$$0.01 \le F < 0.15$$
 (OK as $F = .0322$)

and
$$t \le \underline{0.08} + 1$$

ie.
$$t \le .08 + 1$$

≤ 3.48 hr

 \Rightarrow use the $t_4 = 3.48$ hr.

.. using Lie's expression:

$$T_{f1} = 915^{\circ}C$$

$$T_{r2} = 1032$$
°C

$$T_{r3} = 1109^{\circ}C$$

$$T_{f4} = 1157^{\circ}C$$

7.0 EUROCODE PARAMETRIC FIRE

To convert FLED to fire load/total enclosure area:

FL1 =
$$400 \times 24/98 = 98 \text{ MJ/m}^2$$

$$FL2 = 195.9 MJ/m^2$$

FL3 =
$$293.9 \,\text{MJ/m}^2$$

$$FL4 = 489.8 \, MJ/m^2$$

$$F_v = A_w H^{1/2}/A_T = 0.0322$$

For gypsum wallboard take:

$$k = 0.48 \text{ W/mK}$$

$$\rho = 800 \, \text{kg/m}^3$$

$$c = 840 \text{ J/kgK}$$

 $\sqrt{\text{kpc}}$) = 567. The EC1 places a minimum limit on this factor d 1000 so this will be used.

∴ duration of burning
$$t_{d1} = .00013 \times 98$$
. $\frac{(0322)}{(04)^2} \cdot \frac{1}{(1000)^2} \cdot \frac{1}{(0322)^2}$

$$= 0.00352 \times 98$$

$$= 0.35 \text{ hr}$$

$$t_{d2} = 0.69 \text{ hr}$$

$$t_{d3} = 1.03 \text{ hr}$$

$$t_{d4} = 1.72 \text{ hr}$$

$$t_{d4}^* = 3.5 \times \left(\frac{.0322}{.04}\right)^2 \cdot \left(\frac{1160}{1000}\right)^2$$

$$= .35 \times 0.87$$

$$= 0.31 \text{ hr}$$

$$t_{d2}^* = 0.60 \text{ hr}$$

$$t_{d3}^* = 0.90 \text{ hr}$$

$$t_{d4}^* = 1.5 \text{ hrs}$$

Using the EC1 parametric formula:

$$T_{g1}$$
 = 760°C
 T_{g2} = 847°C
 T_{g3} = 908°C
 T_{g4} = 985°C

8.0 COMPARISON OF RESULTS

The results **d** the various analyses are summarised in Table 6.2 below. **As** can be seen there is a spread of values for each case with the EC1 parametric curve generally being the lowest and the values using Lie's expression being the highest - generally around 20% higher than the EC1 values. The compartment temperatures obtained from using the standard ISO fire curve approach are generally midway in the range of

values for each example. The relationship of the various methods can be seen more clearly in Figure 8.2.

Method	(Compartment To	emperatures ("C	C)
Method	FL1 400 MJ/m²	FL2 800 MJ/m²	FL3 1200 MJ/m²	FL4 2000 MJ/m²
Acceptable Solutions	830	830	1039	1039
Law	890	1032	1055	1060
Standard Fire Curve	860	962	1023	1099
Kawagoe	885	990	1055	1100
Swedish Curves	850	925	955	980
Lie	915	1032	1109	1157
EC1 Parametric Curve	760	847	908	985

Table 6.2: Compartment Temperatures from Alternative Methods

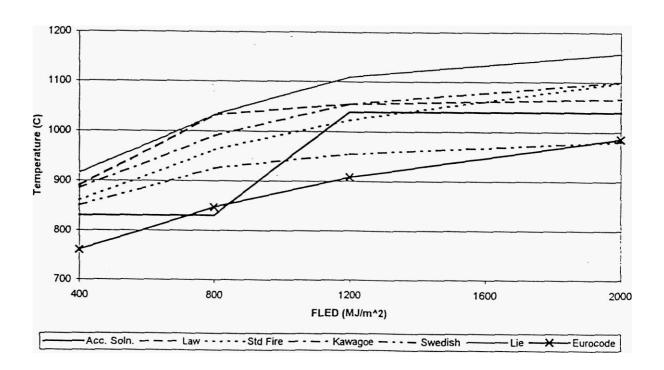


Figure B.2: Comparison of Compartment Temperatures

Appendix C flame Projection Calculations

APPENDIX C

FLAME PROJECTION CALCULATIONS

Using the same compartment as in Appendix B, the external flame height and projection are calculated using the formulae proposed by Law and O'Brien (1981) as given in the Fire Engineering Design Guide (Buchanan 1994).

$$Z = 12.8 (R / W)^{2/3} - h$$

 $R = 0.09 A_w \sqrt{(h)}$

= $0.09 \times 2.4 \times 1.2 \times \sqrt{(1.2)}$

= 0.284 kglsec

 $Z = 12.8 \text{ x} (.284 12.4)^{2/3} - 1.2$

= 1.9 m above top of window

As h < 1.25W

Projection of flame front = 2h I 3 = 800 mm

Projection to centre of flame = h / 3 = 400 mm

The Fire Engineering Design Guide proposes that the radiation from an external flame can be determined by assuming a flame temperature of 600 °C and a flame emissivity of 0.5. Therefore for a flame 1.9 m high x 2.4 m wide, the radiation at a distance of 2.4 m would be 3.28 kW/ m² as shown on the attached radiation analysis on C4.

Law and O'Brien state that the emissivity is related to the flame thickness $\lambda(m)$ by:

$$\varepsilon = 1 - e^{-0.3\lambda}$$

and the flame temperature T_f at a distance X along the centre of the flame is given by:

$$T_f = 520 I [1-0.027(XW/R)] + T_{ambient}$$

The applicability of this equation was confirmed by full-scale testing at Lehtre reported by Law (1981). Therefore at the flame tip $T_f = 540$ °C and at the top of the window.

$$T_f = 520/[1-0.027(1.9x2.4/.284)] +20$$

= 938 °C

As radiation is proportional to T4 take

$$T_{fav}$$
= $(540^4 + 938^4 / 2)^{.25}$
= 809 °C
 ϵ = $1 - e^{-0.3x.8}$
= 0.21

Therefore for the same flame front given above, the radiation at 2.4 m would be 3.25 kW/m^2 as shown on C5 which is very similar to the previous result. The SFPE Handbook (Tien 1995) and Drysdale indicate that the emissivity of luminous flames can be calculated from $_{\text{F}} = \text{I} - \text{e}^{-\text{KL}}$.

Some values of K given by Drysdale are:

Material	K (m ⁻¹)
Diesel Oil	0.43
PMMA	0.5
Polystyrene	1.2
Wood Cribs (1)	0.8
Wood Cribs (2)	0.51
Furniture	1.13

Table C.I Emission Coefficients

Values for L based on the formula L = CL, are given in Figure C-1 taken from Chapter 1 – 4 of the SFPE Handbook. Taking the flame as the front face of a 1.9 m cube and a value of 0.8 for K as a representative figure:

$$\varepsilon = 1 - e^{-.66 \times .9 \times .8} = 0.38$$

Drysdale makes the point that flames that have a high emissivity generally contain large quantities of soot particles which provide **a** heat loss mechanism and hence the flames are cooler. Because of the difficulties in accurately assessing external flame temperatures Drysdale states that black body behaviour, ie ε = 1.0 is commonly assumed as a conservative approach.

However for this analysis the simple method proposed in FEDG will be used.

Assuming a compartment temperature of 842 °C the effect of the external flames is analysed using the FIRECALC radiation module as shown on pages C6 – C10. From these calculations the maximum radiation at a distance of 2.4 m from the wall for just the window emission is 11.6 kW/ m². If the effect of the flames are included the radiation increases to 14.67 kW/ m², ie a 26% increase [Note that this is similar to values reported by Law). The same effect can be obtained if the window is assumed to be 0.32 m closer to the receiver.

Geometry of Gas Body	Radiating lo	Geometric Mean Beam Length L ₀	Correction Factor C
SPHERE 0	Entire surface	0.66D	0.97
CYLINDER H=0.50	Plane end surface Concave surface Entire surface	0.48 <i>D</i> 0.52 <i>D</i> 0.50 <i>D</i>	0.90 0.88 0.90
CYLINDER H=0	Center of base Entire surface	0.77 <i>D</i> 0.66 <i>D</i>	0.92 0.90
CYLINDER H-20	Plana end surface Concave surface Entire surface	0.73 <i>D</i> 0.82 <i>D</i> 0.80 <i>D</i>	0.82 0.93 0.91
SEMI-INFINITE CYLINDER	Center of base Entire base	1.00 D 0.81 D	0.90 0.80
INFINITE SLAB	surface element Both bounding planes	2.00 D 2.00 D	0.90 0.90
CUBE D x D x D	Single face	0.660	0.90
BLOCK D x D x 4D	1 × 4 face 1 × 1 face Entire surface	0.90D 0.86 <i>D</i> 0.09D	0.91 0.83 0.91

Figure C.I: Mean Beam Length for Various Gas Body Shapes

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 600 °C Size of source Distance Offset Opening Υ ·X Yx \mathbf{z} ş ZX2.4 2.4 50 0 1.9

Maximum radiation flow:

 3.277 kW/m^2

Orientation:

 $\Theta = 90.0^{\circ}$

 $\phi = 0.00$

Flame Radiation from FEDG

RADIATION

at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

	Radiat	ion te	mperature	809 °C	
Distance	Offs	set	Size of	source	Opening
X	Yx	ZX	Y	Z	8
2.4	0	0	2.4	1 9	21

Maximum radiation flow:

3.241 kW/m^2

Orientation:

 $0 = 90.0^{\circ}$

 $\phi = 0.0^{\circ}$

Flame Radiation from Law & O'Brien

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 842 °C Size of source Distance Offset Opening Yx zx Х Y Z ક 2.4 2.4 0 0 1.2 100

Maximum radiation flow:

11.608 kW/m² Orientation:

 $\Theta = 90.0^{\circ}$

 $\phi = 0.00$

Radiation from Window Only

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 600 °C

Distance Offset Size of source Opening

X Yx Zx Y Z %

1.6 0 0 2.4 1.9 50

Maximum radiation flow: 5.86 kW/m^2 Orientation: 0 = 90.00

 $\phi = 0.0^{\circ}$

Radiation from Flame Front at 2.4m from Wall

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 842 °C Size of source Distance Offset Opening Y X Yx zx Z ક 1.6 2.4 1.9 18.8 0 0

Maximum radiation flow:

 5.862 kW/m^2

Orientation:

 $\Theta = 90.0^{\circ}$

 $\phi = 0.0^{\circ}$

Equivalent Radiation for Flame at Compartment Temperature

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

	Radia	tion tem	perature	842 °C	
Distance	Off	set	Size of	source	Opening
X	ΥX	zx	Y	Z	- %
1.6	0	- 1.16	2.4	1.9	18.8
2.4	0	0.4	2.4	1.2	100

Maximum radiation flow:

14.669 kW/m² Orientation:

 $\Theta = 91.00$

 $\phi = 0.00$

Combined Radiation from Window & Flame

RADIATION
at a given point
from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature $842\ ^{\circ}C$ Distance Offset Size of source Opening X YX ZX Y Z \$2.08 0 0 2.4 1.2 100

Maximum radiation flow:

14.664 kW/m² Orientation:

 $\Theta = 90.00$

 $\phi = 0.00$

Equivalent Radiation from Window at Reduced Separation

Appendix D

Comparison of Mirror Image and Limiting Distance Concepts for Boundary Separation

APPENDIX D

COMPARISON OF MIRROR IMAGE AND LIMITING DISTANCE CONCEPTS FOR BOUNDARY SEPARATION

As an example, consider two buildings of similar size, 4 m high x 15 m long, built on adjacent properties. Building 1 is constructed first and has 35% of the boundary wall area unrated. Using the mirror image concept as calculated on page D3, the required boundary separation is 2.0 metres. Building 2 is then constructed but has a 100% unrated boundary wall and therefore from page D4 requires a boundary separation of 4.8 metres. This results in a total building separation of 6.8 metres as illustrated in Figure D.1.

From the **FIRECALC** analyses given on pages **D5** and **D6**, it can be seen that:

- If Building 1 burns, the radiation on building 2 is 7.0 kW/ m²
- If Building 2 burns, the radiation on building 1 is 20.0 kW/ m² NG

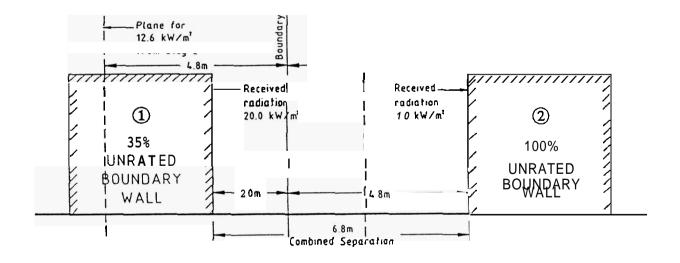


Figure **D.1** Boundary Separations and Resultant Radiation

For Mirror Image Concept

For the limiting distance concept, with a limiting distance of 1.0 m, the same boundary separations as above would require the proportions of unrated wall area to decrease to 28% and 52% as shown on pages D7 and D8. Alternatively, the boundary separations of the buildings must increase to 3m and 8.6m, as calculated on pages D9 and D10, if the original proportions of unrated wall area are used. However, in either situation, the radiation intensity at 1 m inside the adjacent properties is limited to 12.6 kW/ m² so the situation is safe irrespective of which building is constructed first or which building catches fire. This is illustrated in Figure D.2. The resultant radiation intensities on each building from a fire in the other are given on pages D11 and D12, and are significantly reduced from the mirror image concept.

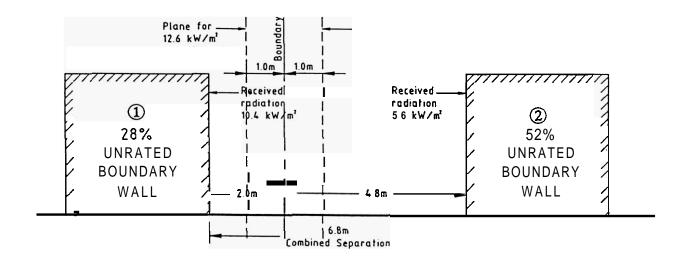


Figure D2 Proportions of Unrated Wall Area and Resultant Radiation for Limiting Distance Concept

26-Jan-99	NZBC Fire Safety Annex. Appendix C. Table C3 - Mirror Image concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings													Ĭ.	Fire Engineering	paring
LOCATION: Bounda	LOCATION: Boundary separation distance for building 1															
LOROUNO NIBTRI I DII I	I Imitinn Radiation		12.6 kW/m^2	2	-											
Radiation Distance Separation Distance (Radiation + Projection)	Exact Distance 1 1.5 2 2.5 3 4 1 1.5 2 2.5 3 -nec 7 ns n75 1 125 15	3.5 4 4.5 3.5 4 4.5 1.75 2 2.25	. S. G. G. S. G. G. S. G.	7 8 7 8 3.5 4	8 9 8 9 4.5	55 8	5 12 8	14 16 14 16 7 8	81 8 6	22 0	222	24 2 24 2 12 1	26 28 26 28 13 14	88 85	32 32 16	34
Rectangle Size		Permitted unprotected area %	se.													
» ×																
15 80	35 17 19 21 24 28	31 35 40	40 44 54 65 78 92	65 7	8 92	8										

NZBC Fire Safety Annex. Appendix C. Table C3 - Mirror Image concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings Boundary separation distance for building 2	I LIMITING KAQIAUORI - 12.0 AVVIIITA	Exect Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 15 12 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 17 15 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 12 24 26 28 30 32 34 17 10 10 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 10 11 12 13 14 15 16 17 10 10 10 11 12 13 14 15 16 17 10 10 10 10 10 10 10	Ae —
26-Jan-99 /		Radiation Distance Separation Distance (Radiation + Projection) Rectangle Size	H W Ae

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Maximum radiation flow: 7.003 kW/m² Orientation:

 $\Theta = 90.0^{\circ}$

 $\phi = 0.00$

Radiation on Building.2from Building Fire (Mirror Image Concept)

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 830. °C Offset Size of source Distance Opening Zx Χ Yx Y \mathbf{Z} કૃ 6.8 15 4 100 0 0

Maximum radiation flow: 20.008 kW/m² Orientation:

0 = 90.00 $\phi = 0.00$

Radiation on Building 1 from Building 2 Fire (Mirror Image Concept)

28-Jan-99 PM	Proposed Boundary Separation Tables - Limiting Distance Concept Allowable Proportions of Unraled Wall Area in Unsprinklered Buildings	imiting Dista a in Unsprink	lared B	ncept Juildings	102																			Fire E	Fire Engineering	gui
LOCATION: Boundary	Boundary separation distance for building 1	П																								
	late of the		_	imitina	l imitina Radiation			и	12	12.6 kW/m^2	n^2			Limitir	Limiting Distance	921		7		5	- Y					
Radiation Distance Separation Distance (Radiation + Projection)	Exact Distance 3 = S m 3	0	2. t. c.	777	2.5	3 3 3	3.5. 6.	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ν. ν. ν. ν. 4	8 B R	7 7 8	8 8	തത ജ	01 6	2 2 2	4 4 E	16 15	18 17	19 29	22 22 21	23 24	26 28 25 25	28 28 27	28 38	32 33 33 34 34	33 34
Rectangle Size																										
4 15 60	28	17 19		21	24	328	ا ا	35 40	4	ų,	3	2	7.0	3												

26-Jan-99 Propo Allow	Proposed Boundary Separation Tables - Limiting Ustaince Correspondings Allowable Proportions of Unrated Wall Area in Unsprinklared Buildings	Distance sprinklere	d Buildin	s Du																		ũ	Fire Engineering	eering
LOCATION: Boundary se	LOCATION: Boundary separation distance for building 2																							
		-	Limitin	Limiting Radiation	6		*		12.6 kW/m^2	n^2			Liming	Limining Distance	R				5					
Radiation Distance Separation Distance (Radiation + Projection)	Exact Distance 5.8 = Sm 5.8	1 1.5 2 25 1 1.5 2 25 n ns 1 15	88 +	2.5	ee €	3 3.5 3 3.5 2 2.5	44 (1)	2.4. E. 2.5. Z.	8 8 4v	7 7 8	∞ ∞ ~	00 00 00	<i>5</i> 6 8	5 t t	4.4 E	81 81 81	81 71	20 22 22 19 21 21	22 24 21 24 21 23	26 26 25 26 25	28 28 27	8 8 8	32 32 31	3 2 2
Rectangle Size					Permitte	Permitted unprotected area %	ected an	8 8																
H W Ae																								
\$	S	17 10 21 74	24	77.	7.8	8	Я	, Ot	35 40 44 34 03 10 92 100	3	2	70	3											

26-Jan-99 F	Poposed Boundary	Proposed Boundary Separation Tables - Limiting Distance Concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings	niting Di In Unsp	stance (rinklered	Concept 1 Buildin	*																			Fire Er	Fire Engineering	0
LOCATION: Boundar	Boundary separation distance for building 2	ce for building 2																									
Fire Hazard Category	FHC	= 2			Emissivity Limiting R	Emissivity Limiting Radiation	LO ₂		" "		1 12.6 kW/m^2	//m^2			Flam	Flame Projection Distance Limiting Distance	tion Dist	ance			د ۲	" "		0 - E E			
Radiation Distance Separation Distance	E S II	Exact Distance 9.6 9.6		£. £.	77	25	66	3.5	4 4	2. 4. 2. 2.	ကက	80 80	8 8	.	5 5	55	4 4	\$ \$	\$ \$	88	ឧឧ	24 24	% % % %	28 3	30 32	88	
(Radiation + Projection) Boundary Distance	=S-Lx	8.6	0	0.5	-	1.5	2	2.5	ဗ	3.5	4	S	7	€0	œ	=	13	15	11	19	12	83	52	27 2	29 31	33	
Rectangle Size							Permitted unprotected area %	d unpro	ected a	'ea %																	l
я А В В В В В В В В В В В В В В В В В В																											
4 15 60	_	81	11	17 19 21 .24	2	. 24	28	34	35	40	44	54 6	65 78	3 82	2 100												ı
																							=	montaine, manipierone	A Lot In Co.	3.0	ı

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 830.°C
Distance Offset Size of source Opening

X YX ZX Y Z % 6.8 0 0 15 4 28

Maximum radiation flow:

 5.602 kW/m^2

Orientation:

 $\Theta = 90.00$

 $\phi = 0.0^{\circ}$

Radiation on Building 2 from Building 1 Fire (Limiting Distance Concept)

RADIATION at a given point from a system of fire sources

(all the dimensions are in meters)

X-sources:

Radiation temperature 830. °C Distance Size of source Opening Offset Χ ΥX ZXY Z ક્ર 15 4 52 6.8 0 0

Maximum radiation flow:

10.404 kW/m²

Orientation:

 $\Theta = 90.00$

 $\phi = 0.00$

Radiation on Building 1 from Building 2 Fire (Limiting Distance Concept)

Appendix E

Boundary Separations using the Proposed Modified Parameters

APPENDIX E

BOUNDARY SEPARATIONS LISING THE PROPOSED MODIFIED PARAMETERS

Using the modified parameters detailed in Chapter 6 and the limiting distance concept, the examples used in Appendix A are reanalysed on the following pages. The original and new boundary separations of the examples **to** allow unrated boundary walls are shown in Table E.1.

Fire Hazard Category	Enclosing Rectangle	Original Separation (m)	New Separation (m)
1	3x12	3.65	5.5
2	3x40	4.75	9.9
3	6x12	8.30	13.6
4	6x30	12.40	22.0

TABLE E.1: COMPARISON OF BOUNDARY SEPARATIONS

Tables E.2 to E.5 give the modified boundary separation tables for each of the fire hazard categories whilst Tables E.6 and E.7 are based on the original C3 tables, and are provided for comparison.

	FHC = 1 Finiting Radiation = 17 kW/m²2 Limiting Distance P = 17 kW/m²2 Limiting Distance LX =		26-Jan-99 Proposed Boundary Separation Tables - Umiting Distance Concept Etire Engineering Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings	P = 03 LX = 03 20 22 24 26 28 20.5 22.5 24.5 28.5 28.5 19.5 21.5 23.5 25.5 27.5	, v, v,	8 8 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	17 KW/m^2 5 6 7 5.5 6.5 7.5 4.5 5.5 6.5		93 3 3 3 2 5 2 5 2 5 3 3 3 3 3 3 3 3 3 3	1.5 1.5 1.5 0.5 1	windary Separation isoles - Li FHC = 1 Exact Distance 8 8 0 8.5 Lx m 5.5	
	Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 28 28 30 32 20 32 34 35 30 32 32 3 3.5 4 4.5 5 5.5 6.5 7.5 8.5 9.5 10.5 12.5 14.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5 20.0 32 32 32 32 32 32 32 32 32 32 32 32 32	FHC = 1 Fmisskrity	FHC = 1 Emissivity = 17 kW/m² 1 kW/m² Flame Projection Distance P = 05 m FHC = 1 Limiting Radiation = 17 kW/m² = 17 kW/m² Limiting Distance P = 05 m Exet Distance 1 1,5 2 2.5 3 3.5 4 4.5 5 8.5 8.5 7.5 8.5 9.5 10.5 12.5 14.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5 8.5 8.5 10.5 12.5 14.5 18.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5 8.5 8.5 11.5 13.5 13.5 13.5 13.5 13.5 13.5 13									≩ £
	Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 28 28 30 32 8 30 32 8 30 32 8 30 32 8 30 32 8 30 32 8 8 9 10 12 14.5 18.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5 30.5 32.5 8 9 10.5 12.5 14.5 18.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5 30.5 32.5 8 9 10.5 12.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	FHC = 1 Exact Distance FAC = 1 Flame Projection Distance P = 0.5 m Limiting Radiation = 17 kW/m²2 Limiting Distance Lx = 1 m Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 28 30.5 32.5 = Sm 6.5 1.5 2 2.5 3 3.5 4 4.5 5.5 6.5 7.5 8.5 9.5 11.5 13.5 15.5 24.5 28.5 28.5 30.5 32.5 = Sm 6.5 1.5 13.5 13.5 14.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5 27.5 28.5 27.5 28.5 27.5 28.5 27.5 28.5 27.5 28.5 27.5 28.5 27.5 28.5 27.5	Exact Distance 1 FHC = 1 Filame Projection Distance P = 0.5 m Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 28 30.5 32.5 = Sm 6.5 1.5 2 2.5 3 3.5 4 4.5 5.5 6.5 7.5 8.5 9.5 10.5 12.5 14.5 18.5 18.5 18.5 18.5 21.5 28.5					protected area %	Permitted un			Rectangle Size
Rectangle Size W Ae	Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 = Sm 6.5 15, 2 2.5 3 3.5 4 4.5 5 5.5 6.5 7.5 8.5 9.5 10.5 12.5 14.5 18.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5	FHC = 1 Exact Distance 1 Figure Projection Distance P = 0.5 m Limiting Radiation = 17 kW/m²2 Limiting Distance Lx = 1 m Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7.5 8.5 9.5 10.5 12.5 14.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5	Example using proposed revised C3 tables Emissivity = 17 kW/m² Flame Projection Distance P = 0.5 m FHC = 1 Limiting Radiation = 17 kW/m² Limiting Distance Lx = 1 m Exact Distance 1 1.5 2 2.5 3 3.5 4 4.5 5 8.7 7.8 8.5 9.5 10.5 12.5 14.5 18.5 20.5 22.5 24.5 28.5 30.5 32.5 = 5.5 8.5 30.5 32.5	19.5 21.5 23.5 25.5 27.5 29.5 31.5	11.5 13.5 15.5	7.5 8.5	5.5	4	2 2.5	7		tion)
tion) = S-Lxm 5.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5 6.5 7.5 8.5 9.5 11.5 13.5 15.5 17.5 19.5 27.5 29.5 31.5 12.e		FHC = 1 Filame Projection Distance P = 0. Limiting Radiation = 17 KW/m^2 Limiting Distance Lx = 0.	example using proposed revised C3 tables FHC = 1	20 22 24 26 28 30 32 20.5 22.5 24.5 28.5 30.5 32.5	12 14 12.5 14.5	9.8	e e. c.	4 4.5	3 3.5	1.5 2 2.5		9

26-Jan-99 Prop	wable Proportion.	Proposed Boundary Separation Tables - Limiting Distance Concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings	Jusprini	klered B	uildings																			ď.	Fire Engineering	pering
LOCATION: FHC 3 example using proposed revised C3 tables	nple using propor	sed revised C3 tables																								
Hire Hazard Category	Ŧ	2		בנו	Cimiting Radiation	adiation					16 kW/m^2	142			Limiting	Limiting Distance					2	Ħ		E		Ī
Radiation Distance Separation Distance (Radiation + Projection) Roundarv Distance	80 H	Exact Distance 13.6 14.6 13.6	- 6 -	1.5 2.5 1.5	0 m 0	3.5	64 6 64 6	3.5 4.5 5.5 4.5 5.5	2.5. 4. 6. 6.		ø / ø	L 80 L	∞ თ ∞	∞ ද ∞	5 ± 5	55 5	4 t 4	8t 7t 8t	8 6 8 2	22 23 23 23 23 23 23 23 23 23 23 23 23 2	3 25 2 24 2 24	28 24 28	8 8 8	8 8 8	33 33	35 25
Rectangle Size H W Ae						ĭ	ттіпе	unprotek	Permitted Unprotected area to	R																
8 12 72		100	=	11 12 13		14 1	16 1	18 20	0 22	24	30	38	43	5	8	150	100									

26-Jan-99	Proposed Boundary Allowable Proportio	Proposed Boundary Separation Tables - Limiting Distance Concept Allowable Proportions of Unrated Wall Area in Unsprinklered Buildings	imiting D	istance	Concept od Build	ings																			į		
LOCATION: FHC.	4 example using prop	LOCATION: FHC 4 example using proposed revised C3 tables																								rire Engineeding	O UL O
					Lait	Limiting Radiation	tion				91	18 kW/m^2			בֿ	Limiting Distance	stance					ځ	н	E	F		
Firecell Temperature	Ĭ,	= 1053 C			Emit	Emitted Radiation	tion				175.0	175.0 kW/m^2															
	3	Exact Distance																									
Radiation Distance		z	-	1.5	7	2.5	ო	3.5	4	4.5	5	8	7			10	12 14	18	18	8	2	24	58	28	8	32	ह्र
Separation Distance	ES	23	7	2.5	က	3.5	4	4.5	2	5.5	9	7	80	6	9					72	8	25	27	8	31	33	32
(Radiation + Projection)										1										1	;	į	,		;		į
Boundary Distance	۳S.kπ	ឌ	-	5.	2	2.5	က	3.5	4	5.	'n	60	_	∞	00	-	12 14	18	0	R	23	24	28	78	8	32	¥
Rectangle Size							Permit	Permitted unprotected area %	otected	area %																	
× ×																											
m m m ²																											
																											1
6 30 180		100	5	-	10 10 11 12	12	13	4	5	11	18	21	24	27	31 3	35 43	3 52	62	74	86	\$						
																											١

Table E.2: Proposed Separation Tables for FHC 1

11,5 13,5 15,5 17,5 19,5 21,5 23,5 27,5 27,5	8.5 7.5 8.5 9.5	5.5	4	7 3 3.5 4	2 2. 2 2 3 3.5 4 6. 2 2 5 3 3.5 4 6. 2 2 5 3 3.5 4 6. 2 2 5 3 3.5 4 6. 2 2 5 3 3.5 4 6. 2 2 5 5 3 3.5 4 6. 2 2 5 5 3 3.5 4 6. 2 2 5 5 3 3.5 4 6. 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25 3 3.5 4
					\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 100 100 100 100 100 100 100 100 100
					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00 00 00 00 00 00 00 00 00 00 00 00 00
					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00 00 00 00 00 00 00 00 00 00 00 00 00
					\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
					3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 8 8 8 8 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7
					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
					8 8 8 8 8 8 8 8	83 100 83 100 82 100 82 100 82 100 82 100 90 100
					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	83 100 82 100 82 100 82 100 82 100
						83 83 83 83 83 83
						82 82 83
	2 1 2 1 2 1					82
						5
						96 100
				2	100	2
				96 100	74 98 100	55 74 96 100
				84 100 78 96 100	66 84 100 62 78 96 100	51 66 84 100 49 62 78 96 100
			100 94 100	71 85 100 68 80 94 100	58 71 85 100 56 68 80 94 100	58 71 85 100 56 68 80 94 100
			87	65 78 87	55 66 77 90 55 65 78 87	45 55 66 77 90 45 55 65 78 87
			86 85 96	65 75 86 98 64 74 85 96	55 65 75 86 98 54 64 74 85 96	45 55 65 75 86 98 45 54 64 74 85 96
			84 95 100 83 93 100	64 74 84 95 63 73 83 93	54 64 74 84 95 54 63 73 83 93	45 54 64 74 84 95 45 54 63 73 83 93
			83 83	63 73 83 93	54 63 73 83 93	45 54 63 73 83 93
			83	63 73 83 92	54 63 73 83 92	45 54 63 73 83 92
			82 92 82 92	63 73 82 92 63 73 82 92	63 73 82 92 63 73 82 92	45 54 63 73 82 92 45 54 63 73 82 92
			82 82	63 73 82 92	54 63 73 82 92	45 54 63 73 82 92

Table E.2: Proposed Separation Tables for FHC 1 (cont'd)

ation Distance = Sm 15 2 25 3 Ition + Projection) 1 3 46 1 3	Limiting Radiation = 17 KW/m²2 Limiting Dissence	35 4 4.5 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 4.5 5 5.5 6.5 7.5 8.5 9.5 10.5 12.5 14.5 18.5 20.5 20.5 22.5 24.5 28.5 20.5 20.5 32.5 34.5 38.5 40.5 3 3.5 3.5 4.5 5.5 8.5 7.5 8.5 9.5 11.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5 27.5 29.5 31.5 33.5 35.5 37.5 39.5 3 3.5 4 4.5 5.5 8.5 7.5 8.5 9.5 11.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5 27.5 29.5 31.5 33.5 35.5 37.5 39.5	ed unprotected area % BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT	100 86 100 74 90 100 67 81 86 100 58 65 75 85 100 63 61 69 77 96 100 52 59 66 74 90 100 52 59 66 74 90 100 51 57 64 71 84 99 100 51 57 63 70 83 96 100 51 57 63 70 83 96 100 51 57 63 70 83 96 100 51 57 63 70 83 96 100	100 83 100 64 75 88 100 55 84 74 96 100 51 58 66 84 100 49 55 62 78 96 100 47 52 58 74 89 100 46 51 57 89 100 46 51 58 68 100 45 50 55 65 75 87 98 45 49 54 64 74 84 85 45 49 54 64 73 83 94
Sm 15 2 2 5 3 35 4 45 5 6 6 7 8 9 9 10 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5		PARATIC		
Sm 15 2 2 5 3 35 4 45 5 6 6 7 8 9 9 10 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ARY SEI		
Sm 15 2 2 5 3 35 4 45 5 6 6 7 8 9 9 10 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 5 6 6 75 85 95 105 Sultan 05 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 5 6 100 Sultan 05 1 1 15 2 2 5 3 35 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 15 2 2 5 3 3 5 4 45 6 100 Sultan 05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SOUNDA		
Elmiting Radiation = Limiting Radiation =	(W/m^2	10.5 10.5 8.5	DI.		88668
Sum 15 2 25 3 35 4 45 5 65 75 5 5 5 1 5 1 5	1/	8 8 8		N. W. W.	100 100 100 100 100 100 100 100 100 100
Sum 1.5 2 2.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 6.5 75 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 2.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 2.5 2 3.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 77 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3.5 4 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3 3 4.5 4.5 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3 3 4.5 4.5 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3 3 4.5 4.5 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 2.5 2 3.5 3 3 3 4.5 4.5 4.5 4.5 5 6.5 75 Sukm 0.5 1 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.		8 8.5 7.5		866886	100 100 100 100 100 100 100 100 100 100
Sim 1,5 2 2,5 3 3,5 4 4,5 5 5,5 5,5 1 1,5 2 2,5 3 3,5 4 4,5 5,5 5,5 1 1,5 2 2,5 3 3,5 4 4,5 5,5 5,5 1 1,5 2 2,5 3 3,5 4 4,5 5,5 5,5 1 1,5 2 2,5 3 3,5 4 4,5 5,5 5,5 1 1,5 2 2,5 3 3,5 4 4,5 5,5 5,5 1 1,5 2 2,5 3 3,5 4 4,5 5,5 1 1,		7.5		500000000000000000000000000000000000000	100 100 100 89 89 80 80 87 77 77 77
Sm 1.5 2 2.5 3 3.5 4 4.5 5 5 5 5 5 7 7 1 15 2 2.5 3 3.5 4 4.5 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 8.5 8.5		01 00 00 00 00 00 00 00 00 00 00 00 00 0	1000 1000 1000 1000 1000 1000 1000 100
S-Lxm	io.	ν τ. 4. τ. τ.		00 88 88 87 77 77 77 77 77 77	50 60 60 60 60 60 60 60 60 60 60 60 60 60
S-Lxm	Radiat	4. rv 4	æ	100 88 82 82 77 77 77 77 69 69 64 64 65 63 63 63	001 85 85 84 85 85 85 85 85 85 85 85 85 85 85 85 85
S-Lkm 15 2 2.5 3 S-Lkm 05 1 15 2 2.5 S-Lkm 05	Limiting	4 4. 8.	rotected	. 100 90 90 81 70 65 65 65 65 65 65 75 75 75	
S-m 1.5 2 2.5 3 S-Lxm 0.5 1 1.5 2 3 S-Lxm 0.5 1 1.5 2 S-Lxm		€. 4 €	ted unp	52 52 53 54 54 55 54 55 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	그 그 그 이 경기 뿐이 없는 것이 없는 것이 없는 것이 없다.
S-Lkm 1.5 2 25 25 25 25 25 25 25 25 25 25 25 25		3.5	Permit	00 00 00 00 00 00 00 00 00 00	
S-ILX m 0.5 1 1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3.5		888 644 644 644 644 644 644 644 644 644	
S. L. m. 0.5 L.		2.5 2.5		100 64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
ר מ ב ב ב און		5. 4 +		78 32 33 33 34 35 36 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	
Into Distance = Sm trion Distance = Sm trion Projection) Inty Distance = Sm mitton + Projection) Inty Distance = S.Lx m Int A Ae W Ae W Ae M Ae W Ae M Ae W Ae M 12 2 8 2 9 4 12 3 9 4 12 5 15 6 18 8 24 10 30 10 30 10 30 11 4 12 36 14 42 16 48 18 54 19 90 10 30 10 40 10 30 10 40 10 40 10 40 10 30 10 40 11 4 10 40 11 5 11 4 12 48 14 56 16 64 18 72 20 80 30 120 40 160 50 200 60 240		± 5. 8.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	48848888888888888
ign from the state of the state		tance s m istance s S m Projection) tance s S-Lx m			
E D D D D D D D D D D D D D D D D D D D		tion DIst ation Di tion + F lary Dist	ngle Siz	- 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Table E.2: Proposed Separation Tables for FHC 1 (cont'd)

								i	n					ì			Ī												
Radiation Distance Separation Distance ≈ (Radiation + Projection) Boundary Distance ≈	tance = Sm Stojection)	5: 6:0	2 5	2.5 2.5	3.5	3.5	€. 4 €	4.5 3.5 3.5	2. α 4	2. 2. 2. 2.	6 8.5 5.5 5.5	7.5	8 8.5 7.5	9 9. 8. 2. 2.	10.5	12.5 12.5 11.5	4.5 13.5 13.5	16.5 15.5	18.5 17.5	20 20.5 19.5	22 22.5 21.5	24.5	26.5 2 25.5 2	28 3 28.5 30 27.5 28	30 32 30.5 32.5 29.5 31.5	5 34.5 5 33.5	5 36.5	38.5 5 38.5 5 37.5	40.5 5 40.5 5 39.5
Rectangle Size	e.					Рет	Permitted unprotected area	protecte		*						BOUN	DARY S	EPARA	TION T	BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT	SINGL	MITING	DISTA	OE CO	CEPT				
	m^2																												
- 4	r.	46	88	94	8		8									8						9							
5	10	8 8	39	51	98	28 8	\$;		ξ																				
υ τ υ 4	5 5	8 8	2 2	3 8	6 4	8 8	8 3	3 2	8	8	8																		
2	52	23	78	8	38	43	5		72	83	5																		
5 8	8	2	52	8	8	8	48		63	<u>د</u> و	8 5	8 5	ξ																
ro r	04	3 23	7 7	27	E 8	8 8	4 8		40 4	22	2 2	8 8	5 5																
6 4	3 6	3 2	7 7	2 %	3 8	3 8	3 6		46	52	4	78	94	5															
		3 2	3 2	3 8	2 8	3 8	88		45	25	2	73	87	8															
. 6		23	ន	78	53	32	38		4	48	28	5	82	98	5														
		2	33	28	8	32	35		43	4	22	64	8 5	8 8	\$ 5														
		22	23	38	8	32	32		43	4	8 5	9 6	9/	8 8	2 8	5													
		2	23	8 3	8 8	ਲ 3	33		45	6 f	3 8	8 8	- 2	3 8	S &	3 5													
		2 2	ឧ	8 8	8 8	5 6	¥ .		4 4	4	3 2	8 6	8 8	. 82	8 8	8													
		3 8	3 5	9 8	9 8		5 2		£ £	45	22	8	88	92	84	8													
		3 2	3 8	2 8	2 8		34		4	45	25	8	49	75	83	8	8												
	200	23	2 2	78	28	3	34		4	45	25	8	87	75	83	66	8												
9	•	45	99					- 3																					
90 (5 5	8 8	8 8						8	ξ																			
m *	18	3 8	8 6	÷ 6	£ %	8 4	ò 2	5 6	25.55	3 8	8																		
. 60	302	22 23	32						93	73	96	5																	
9	36	22	24						28	64	83	5																	
8	48	2	23						48	54	88	98	9																
		21	23						43	48	8	74	8	5															
		27	33						4 ;	£ :	S S	67	£ ;	8 8	8 8														
6 14		2 2	8 8						38	\$ \$	2 2	2 6	4 6	3 6	3 4	Ş													
		2.5	3 5						8 %	7 7	8 4	8 %	2 6	7 8	2 8	3 5													
2 6		3 5	3 8						3 6	7	48	3 25	8	25	85	8													
		2.2	3 2						8	: 8	. 4	23	8	88	92	94	8												
		7	3 :						36	38	45	52	58	65	73	88	9												
. 6	3 %	21	2 2						38	33	5	5	28	64	7	88	8												
		2	22						38	39	45	5	22	64	7	84	66	8											
9		21	22						38	33	45	51	22	8	2	83	46	8											
		2	22						38	39	45	5	22	63	20	83	96	8											

Table E.2: Proposed Separation Tables for FHC 1 (cont'd)

ΕE		38.5 40.5	37.5 39.5																																			
0.5		36.5	35.5																																			
		34.5	33.5																																			
د ه		32.5	31.5	14	ı																																	
		30.5	29.5	ONCE	-																																	
		28 28.5	27.5	ANCE																																		
		28 26.5	25.5	G DIST																																		
nce		24.5	23.5	LIMITIN																																		
n Dista		22.5	21.5	JSING	25																																	
rojectio Distano		20.5	19.5	BLES															8	8	8													9	3 6	8	100	5
Flame Projection Distance Limiting Distance		18 18.5	17.5	NOI TA	10															8														20		86		
		16.5	15.5	BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT												\$	8			96													8			87		
		14.5	13.5	RY SE											8																8 5	8 8				75		
		12 12.5	11.5	OUND								8	8	8 8			78											100	9				2 2			65		
W/m^2	W/m/2	10.5	9.5	-	1						8				s 2													9					0 0					
1 17 kW/m^2	85.0 K	9.5	8.5							8					92												8						3 8					
		8.5	7.5						ξ			7			5 S					20						3 5							[C 4					
11 16	"	7.5	6.5					:	8 8						. G					45	č.									20			6 6					
		8.5	5.5						75						4 4					40	9				98					43			38					
		5.5	5.				8		99 86						37		35			35					74		45			ر ج			32 6					
adiation	adiation	5.5	4	8						 					4 5																		5 6					
Emissivity Limiting Radiation	itted R	4.5	3.5	Permitted unprotected area %		8																	8										23					
ត្រ ភ	בֿו	3.5	e e	unprote		- 4		8																									27 27					
-	-	3.5	2	mitted				43															,,,,,,										25 2					
		3 3	2	ď		90 2		38 4														8											24 2					
-	835 C	2.5 2.5																																				
			1,5			5 87																											1 23					
1	п	1.5	-			95																1											2 2					
FF	F	- t	6.0			\$ 5	24	13	3 %	1 5	. 2	21	7	'n	0 6	, 7	2 2	N	2	7	74	4	35	7	N	N C	1 6	1 6	12	2	5	2	5 5	v č	4 6	1 2	2	1 6
		E	. S-Lx m																																			
Δic	9	€ 8	tion)		e 2			ec.		, 6	2	4	88	112	128	210	280	S	S.	S	8		18	4	2	0 6	ō 4		98	12	28	44	160	5 6	320	480	3 5	040
Fire Hazard Category	Firecell Temperature	Radiation Distance Separation Distance	(Radiation + Projection) Boundary Distance ≍	ezic	/ Ae π	7 7			38											0 580						4 .							20 46			60 48		
Hazard	cell Ten	Radiation Distance Separation Distanc	diation of	Rectangle Size	3 E	- (4 m	4	S G	0 «	=	12	14	-	2 48	2 8	3 4	ത								eo e				60			60 6					
Fire	Ē	Rad	(Rac Bou	Rec	ΙE	7		7				7	7	7	- 1		. ~	7	7	7	-	Ι "	. 40		~	~ (, s		₩	w	~	~ (- 1	. a	, 44	. α	

Table E.3: Proposed Separation Tables for FHC 2

Firecell Temperature Radiation Distance Separation Distance = S m (Radiation + Projection)	<u>"</u>	;	840.0		_	ב ב	itted Ra	Limiting Radiation Emitted Radiation				125.0	17 KW/m"2 125.0 KW/m ²	2 2			imiting L	Limiting Distance					s			
	1.5	2 ~ -	2.5.	3.25	3.5	3.5 4 4 8.	4 4.5 5 3.5 4	4.5 5 5.5 4 4.5	5 6.5 5.5 5.5	7.5 3.55 6.5	8.5.	9.9 5. 5.	10.5 10.5 9.5	12.5	14.5 13.5	16.5 15.5	18.5 17.5	20.5 22.5 27 19.5 2	22 24 22.5 24.5 21.5 23.5	24.5 26.5 23.5 25.5	28.5 5 28.5 5 27.5	30.5	32.5	34 34.5 33.5	36.5	38.5 40.5 37.5 39.5
	298	35 58	8				13.								8							22.0				
	8 8 8	23.5	6 6	9 5	8				·																	
	3 5	6 6	2 2 3		8 5																					
	3 3	t 4 0 4	28			8 8																				
	33	4 43	52	2 7 1		3 8 8																				
	8 8	43	58	2 2	8 82		8																			
	8 8	6 4	20 20	2 2			8 8																			
	8 8	5 4	200	69			8 8																		4	
	8 8	43	28	69 69			3 8					Ş.F														
	8 8	64 6	56	69			8 6																			
	8	3	S.	3																						
	8	3 2	3 2	ž	8													-	. 3							
	7 2	3 8	43	9	62	8																				
	88	78	8 %	50	57	2 22		8																		
	8 8	38	33	42	83	65	79			٤																
		52	35	98	8 4	55	69	74		3 8																
		2 23	5 50	8 8	5 4	8 8	19		180	100	\$															
	6 4	25	2 3	37	4 4	52	29				8 8															
	2 2	2 2	. E	37	44	51					8 8	åv.														
			5 3	37	43	8 8		8 8 8				8														
	6 6		8 8	37	£ £	8 8																				
	- 6		8	37	43	8						5 5														
			30	37	43	S	28	63	- 3	23		3 8														
					A			00				3														

33 53 79 8 8 8 8 8 8 17 19 19 19 19 19 19 19 19 19 19 19 19 19	Fire Haza	Fire Hazard Category		FHC			,		-	1		1			-																	
The color of the											miting	ry Dadiatio					- !			-	Fla	me Proj	ection Di	stance				۵		0.5	Ε	
1 1 2 2 2 3 3 4 45 5 5 5 5 5 5 5	Firecell T	emperature		F	"	94	18.5 C			. Ш	mitted	Radiatio	E C		н		17 k	W/m^2			Ę	iting Dis	tance					۲	**	-	Ε	
A	Radiation	Distance n Distance	E S	- 1.5							4 4	4.5			1		6	5	1	-	1	1	1		1	1	30	32	34	38	88	04
1	Roundan	+ Projectio	(uc									,															30.5	32.5	34.5		38.5	40.5
A		Cistance	E S o	0.5					2.5		3.5																29.5	31.5				39.5
H W Ae mr22 3 2 8 9 12 1 3 33 53 79 100 3 2 8 9 12 1 1 2 1 2 1 2 1 3 1 43 100 3 3 1 2 9 1 100 3 4 1 12 1 1 2 1 2 2 2 2 3 1 4 1 100 3 1 1 2 1 2 1 1 1 2 1 2 2 2 3 1 4 1 100 3 1 1 2 1 2 1 1 2 1 2 2 2 3 1 4 1 100 3 1 1 2 1 2 1 1 1 2 1 2 2 2 3 1 4 1 100 3 1 1 2 1 2 1 1 1 2 1 2 2 2 3 1 1 1 1 1	Rectangle	Size																														
1								Pe	rmitted	unprot	ected a	% ea %						I	6			1										
1 3 13 15 17 10 10 10 10 10 10 10												2						a	a 2 2 3	Y SEP/	RATIO	¥ B	NSW S	O LMI	NG DIS	TABE	CONCY	描				
1 2 3 4 5 7 100																																
1 2 3 14 15 15 15 15 15 15 15	,																															١
1	m (e .		33	53		_	_																								
1	, c	9 0		7	3																											
1	0 0	n ;		8 !	52							8																				
1				1:	5 5																											
1				11	21									8																		
1				- !	2									8																		
1	9			17	2 3										2																	
14 25 25 25 25 25 25 25 2				18	2											0																
1				18	40											0																
1 1 1 1 1 1 1 1 1 1				18	19												C															
1				16	19																											
3 20 60 16 19 23 27 31 35 40 44 49 71 84 97 100 3 40 150 160 16 16 23 26 30 35 39 43 46 76 87 100 100 3 40 150 160 16 16 23 26 30 35 39 43 47 56 66 76 89 100 100 3 100 16 16 19 23 26 30 35 39 43 47 56 66 74 89 100 100 100 4 1 20 26 30 35 39 43 47 56 66 74 89 74 89 100 100 100 4 1 4 4 4 4 4 4 <td></td> <td></td> <td></td> <td>16</td> <td>19</td> <td></td>				16	19																											
3 90 900 16 19 19 23 26 31 35 39 43 48 57 67 78 86 100 100 3 60 150 160 190 190 190 190 190 190 190 190 190 19				16	19																											
3 40 170 110 110 110 120 22 26 30 35 39 43 46 57 68 67 76 85 910 100 100 100 100 100 100 100 100 100				18	19	23																										
16				16	19	23																										
16				16	18	23																										
10 200 16 19 23 26 30 35 39 43 47 56 65 74 83 92 100 10 200 16 19 23 26 30 35 39 43 47 56 65 74 83 92 100 1				9	19	23																										
1				9	13	23																										
4 32 48 69 94 100 4 10 20 28 38 50 65 83 100 4 16 10 20 28 31 47 57 68 81 100 5 20 16 18 20 25 31 38 47 57 68 81 100 6 24 16 18 20 25 31 38 47 57 68 81 100 10 40 16 18 20 24 33 40 49 58 69 89 100 10 40 16 18 21 26 29 33 44 50 65 89 100 11 40 16 18 21 20 22 26 39 34 45 56 69 81 100 18				9	9	23																										
4 32 48 69 94 100 2 8 50 65 83 100 4 16 10 22 28 36 65 83 100 6 24 16 19 23 27 33 40 49 68 81 100 10 4 16 18 21 26 31 37 43 51 60 79 100 10 40 16 18 21 26 31 37 41 50 65 83 100 11 48 32 16 17 20 22 26 29 33 36 42 51 60 79 100 11 40 15 17 19 22 25 29 33 41 50 61 71 89 100 18 64 17 50				:	d	3																										ı
4 1 2 2 2 3 4 7 6 8 1 100 4 1 1 2 2 3 4 5 6 8 1 100 4 1 1 2 2 3 4 5 6 8 1 100 6 24 16 19 23 27 3 4 5 6 8 1 100 10 40 16 19 23 24 26 65 8 100 11 40 16 18 21 26 29 33 36 42 53 65 79 94 100 11 40 16 18 20 24 28 30 35 40 45 57 72 88 100 11 40 16 17 40 40 40 40 </td <td>4 4</td> <td>4 6</td> <td></td> <td>32</td> <td>48</td> <td>69</td> <td></td>	4 4	4 6		32	48	69																										
4 16 17 22 29 37 47 58 72 87 100 4 16 16 20 25 31 38 47 57 68 81 100 1 20 16 18 21 28 31 37 49 58 69 70 39 40 49 58 89 100 1 40 40 40 48 56 89 100 30 31 37 40 45 57 72 88 100 1 40 40 40 45 57 72 88 100 1 40 40 40 45 57 64 100 40	7 .			2 !	28	38																										
4 10 20 25 31 38 47 57 68 81 100 6 24 10 49 56 68 91 100 10 40 16 18 21 28 32 40 49 56 68 91 100 10 40 16 18 20 24 28 32 38 42 56 68 91 100 11 40 16 17 20 23 26 30 35 40 45 57 72 88 100 12 46 16 17 20 22 26 29 33 36 41 50 61 73 88 100 18 72 22 25 28 32 36 40 48 58 69 81 100 18 72 17 19 22 <td></td> <td></td> <td></td> <td>- :</td> <td>22</td> <td>29</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>				- :	22	29							_																			
9 24 16 18 23 27 33 40 49 58 68 91 100 1 8 24 16 79 100 79 100 1 40 40 51 60 79 100 1 40 15 17 20 23 28 30 35 40 45 57 88 100 1 40 15 17 20 23 28 30 45 57 88 100 14 56 64 15 17 19 22 25 28 32 36 40 48 58 69 81 100 18 72 18 22 25 28 31 35 39 47 56 69 77 89 100 20 15 17 19 22 25 28 31 34		2 6		0 9	2	52								0																		
9 24 18 21 26 31 37 43 51 60 79 100 10 40 15 18 20 24 28 32 38 44 50 65 83 100 12 48 15 17 20 23 26 33 36 40 45 57 72 88 100 14 56 15 17 19 22 25 29 33 36 40 48 58 40 40 10 73 88 100 18 72 19 22 25 28 31 35 36 47 56 69 100 20 80 17 19 22 25 28 31 34 37 44 51 59 67 76 89 100 30 150 15 17 19 22<	. 4	2 2		9 9	6 6	23									_																	
9 32 15 18 20 24 28 32 38 44 60 65 83 100 10 40 15 17 20 22 28 33 38 42 53 65 79 84 100 14 56 15 17 19 22 25 28 32 36 41 50 61 73 88 100 16 64 15 17 19 22 25 28 31 35 36 47 56 69 81 100 20 80 15 17 19 22 25 28 31 34 47 56 69 81 100 20 180 15 17 19 22 25 28 31 34 37 44 51 59 67 76 89 100 40 160		4 6		D 1	20 9	21									_																	
1 40 15 17 20 23 28 30 35 40 45 57 72 88 100 14 56 15 17 20 22 26 29 33 38 42 53 65 79 84 100 16 64 15 17 19 22 25 28 31 36 47 56 64 77 89 100 20 80 15 17 19 22 25 28 31 35 36 47 56 69 77 89 100 20 80 15 17 19 22 25 28 31 34 37 44 51 56 64 77 89 100 30 150 160 17 19 22 25 28 31 34 37 43 50 57 65	4 4			5	9 !	5 50																										
14 56 15 17 19 22 25 29 33 38 42 53 65 79 84 100 16 64 15 17 19 22 25 28 32 36 41 50 61 73 86 100 20 80 15 17 19 22 25 28 31 35 36 69 81 100 30 120 15 17 19 22 25 28 31 34 37 46 55 66 77 89 100 30 120 15 17 19 22 25 28 31 34 37 44 51 69 77 89 100 40 160 15 17 19 22 25 27 31 34 37 43 50 57 65 70	5 5 5			2 4	: :	2 5																										
16 73 16 73 18 100 18 72 19 22 25 28 32 36 41 50 61 73 86 100 20 80 15 17 19 22 25 28 31 35 39 47 56 66 77 89 100 20 120 15 17 19 22 25 28 31 34 37 44 51 69 77 89 100 40 160 15 17 19 22 25 28 31 34 37 43 50 57 65 70 84 100 50 200 200 15 17 19 22 25 27 30 34 37 43 50 57 65 70 84 100 60 240 15 17 <t< td=""><td>4 14</td><td></td><td></td><td>2 4</td><td>- :</td><td>2 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4 14			2 4	- :	2 5											18															
10 0.4 10 40 48 58 69 81 94 100 20 80 12 15 17 19 22 25 28 31 35 39 47 56 66 77 89 100 30 120 15 17 19 22 25 28 31 34 37 46 55 64 74 85 100 40 160 15 17 19 22 25 27 31 34 37 43 50 57 65 70 89 100 50 200 15 17 19 22 25 27 31 34 37 43 50 57 64 71 89 100 50 240 17 19 22 25 27 30 34 37 43 50 57 63 70 <t< td=""><td>4</td><td>2</td><td></td><td>2 4</td><td>- ;</td><td>6 9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4	2		2 4	- ;	6 9											100															
10 17 19 12 2 5 28 31 35 39 47 56 66 77 89 100 30 120 15 17 19 22 25 28 31 35 38 46 55 64 74 85 100 40 160 15 17 19 22 25 28 31 34 37 44 51 59 87 76 94 100 50 200 15 17 19 22 25 27 31 34 37 43 50 57 65 72 88 100 60 240 15 17 19 22 25 27 30 34 37 43 50 57 65 100 80 320 15 17 19 22 25 27 30 34 37 43 50 87 64 71 88 100 10 400 400 15 17 19 22 25 27 30 34 37 43 50 87 64 89 100	2 4			2 4	- :	6 6											84															
20 100 15 17 19 22 25 28 31 35 38 46 55 64 74 85 100 30 120 120 15 17 19 22 25 27 31 34 37 44 51 59 67 78 94 100 50 200 15 17 19 22 25 27 30 34 37 43 50 57 64 71 86 100 80 240 15 17 19 22 25 27 30 34 37 43 50 57 64 71 86 100 80 320 15 17 19 22 25 27 30 34 37 43 50 56 63 70 84 98 100 400 15 17 19 22	2 6			2 4	- :	5 9	22							56			89															
30 150 15 17 19 22 25 28 31 34 37 44 51 59 67 76 94 100 50 160 15 17 19 22 25 27 31 34 37 43 50 57 64 71 86 100 60 240 15 17 19 22 25 27 30 34 37 43 50 57 63 70 85 100 80 320 15 17 19 22 25 27 30 34 37 43 50 56 63 70 84 98 100 400 15 17 19 22 25 27 30 34 37 43 50 56 63 70 84 98 100 400 15 17 19 22 <	2 6	3 5		2 4	- :	20 1	77							55			85															
50 200 15 17 19 22 25 27 31 34 37 43 50 57 65 72 88 100 50 200 15 17 19 22 25 27 30 34 37 43 50 57 64 71 86 100 60 240 15 17 19 22 25 27 30 34 37 43 50 57 63 70 85 100 80 320 15 17 19 22 25 27 30 34 37 43 50 56 63 70 85 100 100 400 15 17 19 22 25 27 30 34 37 43 50 56 63 70 84 98 100 400 15 17 19 22 25 27 30 34 37 43 50 56 83 70 83 97	8 9			0 ;	- :	6	77							51			76		100													
50 200 15 17 19 22 25 27 30 34 37 43 50 57 84 71 86 100 60 240 15 17 19 22 25 27 30 34 37 43 50 57 83 70 85 100 80 320 15 17 19 22 25 27 30 34 37 43 50 56 63 70 84 98 100 400 15 17 19 22 25 27 30 34 37 43 50 56 83 70 83 97	9 6			5	/-	19	22							20			72		5													
80 320 15 17 19 22 25 27 30 34 37 43 50 57 63 70 85 100 80 320 15 17 19 22 25 27 30 34 37 43 50 56 63 70 84 98 100 400 15 17 19 22 25 27 30 34 37 43 50 56 63 70 83 97				15	17	19	22							50			7.		3 5													
80 320 15 17 19 22 25 27 30 34 37 43 50 56 63 70 84 98 100 400 15 17 19 22 25 27 30 34 37 43 50 56 63 70 83 97				15	17	19	22							20			20	8 8	3 5	5												
400 15 17 19 22 25 27 30 34 37 43 50 56 83 70 83 97				15	17	19	22							50			20	8	3 8	3 5												
18 69 01 69 63 81	4			15	17	19	22							05			2 5	5 6	0 0	3												
														3			2	00	6	3												

Table E3: Proposed Separation Tables for FHC 2 (cont'd)

1.5 2				2 2		15 18	•		15 16						51 51		15	15 16			16		5 5				7 ;				<u>-</u> .		14
2.5				38					9 4					; ;				8 17		20 25						15 17							01
3.3	8			£ %																31								18			18 18		2
3.5	2.5	Permit		2 2																											8 4		
8. 3.	က	tted unp		2 8																											2 2		
4 4.5	3.5	Permitted unprotected area		8 6		4																									3 23		
5. 4.	4	area %	ş	3 2	28	49	43	33	32	31	30	8 8	8 8	3 8	28	28	28	ac													2 2		
5.5	5.			87	88	57	8 5	38	35	34	33	3 3	34	. F	31	30	30	۶													78		
6.5	5.5			8	16	76	2 2	4 7	44	4	4	8 8	9 %	3 8	36	35	32	35		2 2	99	25	47	4 5	8 8	3 8	33	33	5 3	2 5	. E	8	6
7.5	6.5				9	88	8 8	8 8	23	8	47	8 8	42	4	41	4	4	40		5	8	72	28	20	9 5	4	33	38	38	3, 5	38	32	25
8.5	7.5					8 5	3 2	22	94	28	28	\$ £	48	47	46	46	46	46			8	06	72	61	3 2	48	48	44	4 5	3 6	3 8	39	30
9.5	8.5						8	88	11	2	8 8	7 09	54	52	52	51	5	5				8	. 28	6, 3	8 8	28	23	51	46	44	43	43	43
10.5	9.6	_,						9	8	82	9 5	. 69	61	29	25	22	28	ž					8 :	78	69	94	6	8	70	48	48	48	47
12.5	11.5	BOUND							8	8	8 8	8 8	92	7	69	89	79	/9						3 5	83	84	79	25	8 8	8	25	22	56
14.5	13.5	ARY SE									8	8	85	85	82	8	2 2	0/							100	9	18	94	6 1	. 69	67	99	65
16.5	15.5	PARATI											100	8													8	2 2	84	8	78	18	75
18.5 2	17.5 1	ON TAB													8																88		
20 2 20.5 27	19.5 2	BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT													8			3										5	8		8		
22 2	21.5 23	SING LIN																													8	8 :	8
24 26 24.5 26.5	23.5 25.5	MITING																												ď.			
3 28 5 28.5	5 27.5	ISTANG																															
30.5	5 29.5	E CON																															
32.5	31.5	CEPT																															
	33.5																																
36.5	35.5																																r
38.5	37.5																																

Table E.3: Proposed Separation Tables for FHC 2 (cont'd)

Firecell Temperature	# =	94	948.5 C			<u> </u>	mitted Radiation	iation				125.0	125.0 kW/m^2	2 0			Builing	Limiting Distance					ž		-	E
Radiation Distance Separation Distance = S m	1.5	1.5 2	1	3 3	3 3.5	1	4.5	5.5	6.5	7.5	8.5	9.5	10.5	12 12.5	14 14.5	18 18.5	18.5	20.5	22.5	24.5 2	26 28 26.5 28.5	30.5	32 32.5	34.5	36.5	38 38.5
(Radiation + Projection) Boundary Distance = S-Lx m	0.5	-	5.1	2	es es	3.5	4	8.	5.5	6.5	7.5	8.5	9.5	11.5	13.5	15.5	17.5	19.5	21.5	23.5 2	25.5 27.5	5 29.5	31.5	33.5	35.5	37.5
Rectangle Size				à	Per Bitt of Dourote to	e oge	t d rea%	8						BOUNE	DARY S	EPARA	ION TA	BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT	SINGLI	MITING	DISTAN	CECON	CEPT			
H W Ae n n ² 2																										
7 1 7	 	25 8	98	9 77	96 100			5	- 1 - 1 - 1				9	- 10 - 10		**	_									
	7					. 51	8		85	\$																
7 4 28	5 5	18 5			34 34			5. 4. 5.	7 29	18	2 8 8	8														
	<u>.</u> £								5 5	8	79	26	8											er .		
	4 :								45	25	63	92	9	8 8									7.5			
7 10 70	4 5			8 7		0			9 6	t 4 0	24 8	5 2	67	3 8	8											
	<u>i </u>								32	88	44	25	. 6	8	8											
ī 6	14								8	88	42	49	28	73	83	9										
	4								8	33	9 1	48	23	88	88 8	8										
50	4 5	15	9 9		18 20				2 2	8 °	B &	4 6	ر د ج	6 K	5 6	3 8	3 %	3 5								
7 30 210	1 2								2 2	3 5	38	39	£ £	25	62	2 2	84	97	8							
2 22	7.								27	3	34	38	42	8	83	69	62									
8 8	14	15	16						23	33	34	38	42	ଌ	82	87	78		98	90						
	7			14	18 18				27	8	34	88	4 :	64 6	75 [62	7 5									
	:								ć	Ş	P.	Ş	-	7	à	2	ξ.									
Q Q	3				1,	8																				
8 2 - 3	19								9																	
l m	17		24	58	34 4					8																
ч	15									8 93	8 2	5														
8 5 40	ر د ب	9 4	ω r							28 8	2 2	87	9													
ρœ	5 4					22 23				47	22	68	8	100												
	14									9	49	28	68	16	8											
12	14									37	£ :	5 :	8 :	6 ;	8											
14	14									8 E	0 6	4 4	4 G	7 28	6 6	8 5										
16	7 ;	ن .								7 2	9 %	1 5	47	3 6	2 6	3 2	5	100								
8 18 144	4 5	មិត	ប៊ុក	5 ¢		20 81	2 2	3 2	58	S 8	35.5	4	45	52	2 2	88	8 8	8 8								
2 2	4 4	ī tā								53	32	38	4	49	29	71	83		8							
3 5	4	. t								28	33	35	88	46	25	84	74			100						
G 68	4		. 5	. 60	17	18 18				58	31	34	38	45	25	6	69		89		2					
9	4									28	8	34	37	44	51	29	87									
8 8	4	15	15	. 91	17 1	18 19				27	31	34	37	43	B	21	92				97 100	•				
5	14									27	30	3.4	27	73	0	57	RA					_				

Table E.4: Proposed Separation Tables for FHC 3

																								ı		П	П	ı
Radiation Distance	E SS	- 2	1.5	9 6	3.5	€ 4	8. 4. 8. 7.	4 10	4. r.	v. vo	4 6	8 8	8 6	9 01	5 =	12 14 13 15	1 16	£ £	2 2	3 23	25	26	28	330	33	34 35 3	36 38 37 39	04 4
(Radiation + Projection) Boundary Distance =	ion) = S-Lx m	-	5.	8	2.5	m	3.5	4	4.5	S	9		80	6	10	12 14	4 16	18	20	22	24	26	28	30	32	34 3	36 38	40
Rectangle Size					C		0.00	e petro	8																			
H W Ae	. 7				•	ermitte	Permitted unprotected area																					
39			١,																									
- 0		\$ 5	51	8 5	8																							
3 6		8 8	42	62	87	8																						
		22 25	88 8	5 5	74	97	8 5																					
		24	8 8	8 8	63	29	2 &	8																				
		24	34	46	29	73	88																					
	0	24	34	45	22	69	83		8 8																			
	~	24	34	45	28	89 69	2 2																					
4 6	4 6	24	, ¥	4 4	25	88	78																					
	18	24	34	44	99	98	11	88	8																			
	0	24	34	4 :	22	99	77																					
1 30 3	30	24 24	4 8	4 4	2 2	65	2 92			8																		
	8	24	34	44	24	92	92																					
	90	24	34	4	24	99	75			8																		
	80	24	34	44	24	. 99	15			8																		
	8	?	7	;	2	g.	75			3																		
,	,	ç	ž	2	8																							
- 0	,	3 0	30	45	63	87	9																					
4 E	. 60	17	54	34	47	62	80	8																				
4	8	9	2	30	33	۶ .	92	£ 8			5																	
2	10	6 6	5 5	27	33	6 5	3 8	6 6			3 8																	
9 0	12	ច	8 8	25	3 5	38	45	54				8																
٠ 9	2 2	5	19	24	30	88	43	20																				
2	*	5	19	24	8	35	4	48											2 1 2 2 2 2									
14	28	15	19	24	2 2	۶ ج د	2	47	ខ្លួ	8 8	2 ۾ ع	88	3 5															
9 5	2 23	t t	6 6	24	2 8	, A	5 6	45	- 19				8															
<u>ب</u> ک	p ç	5 5	9 6	24	3 6	34	39	45																				
8 8	2 00	5	19	24	8	8	38	44	33																			
4	90	15	13	24	53	34	39	44							8 8													
8	8	15	19	24	8.	34	39	44							3 8													
9	120	ξ.	19	24	2 29	34	ඉ ඉ	44						6 26	8 8													
8	8	5 5	2 9	54	87	3 :	90	: :				2 6			8													
5	-				000	2.0	30	0.0							3													

Table E.4: Proposed Separation Tables for FHC 3 (cont'd)

Firecell Temperature Radiation Distance = Separation Distance = (Radiation + Projection) Boundary Distance = Rectangle Size H W Ae								I imiting Radiation	MACHINE			11	-	150 0 kW/m^2															
1 0 1		=		1003 C	,,		. ш	Emitted Ra	Radiation	_				-	V/m"z										1			1	
0 1			,	,	,	,				u	ď	_				12	4								32		36	38	4
0 1	E S =	- 0	2.5	ч ю	3.5	0 4	5. 4	t w	5.5	o 60	۰ ۲	. &		9	Ε.	13	15	17	19	21 2	23 2	25 2	27 29	31		3 35			
9.00	= S-Lx m	-	5.	7	2.5	9	3.5	4	5.	40	60	7	80	O	5	12	4	16	18	8	22 2	24 2	26 28	8 30	32	34	38	38	40
≩ €						Permitte	odun pe	Permitted unprotected area	area %						ŭΙ	DUNDA	RY SE	PARATI	BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT	LES US	ING LIN	ILLING	DISTAN	CE CO	CEPT				
		9	,	6		1 5																							
3 7 9		1 6	24	34	6 4	3 29	80	8																					
e		15	19	56	34	45	22	۲ :	87	8 5	8																		
۷ (7 ;	2 :	2 2	2 8	ر ان	6 6	8 8	86 g			ξ																	
3 5 15		<u> </u>	<u>د</u> و	2 %	26	30 32	38	6 6	8 5			8 8																	
3 60		. E	5	19	22	27	32	37	44																				
9		5	15	18	22	38	30	35	40																				
12		13	15	18	12	52	53	33	38						8 8														
		£ :	15	18	57	52	8 8	32	37							2													
6		ნ :	5 1	8 6	5 5	24	8 8	32	36					10		3 5													
3 18 54		2 6	i t	<u>د</u> و	3 5	24	28		32			28	99		88	8													
2 8		<u>.</u>	15	· ·	7.	24	12	3	34	88							8												
3 4		13	15	6	. 5	54	27	3	34	37	44			87		. 26	8												
B		13	15	48	21	24	23	33	34	37							8											er.	
9		13	15	18	21	24	27	30	34	37						æ :	8 9												
8		13	15	18	21	54	27	30	34	37							8 :												
8		13	15	8	21	54	27	8	34	37							8												
		3,5	86	54	7.4	6	8																						
		8	3 2	08	30	5.	65	81	88	90																			
4 3 12		4	7	22	8	38	46	28	88																				
4 4 18		13	16	49	24	30	37	45	53																				
4 5 20		12	15	18	22	58	32	38	45		22	93	8 6											8.1	,				
		12	1 :	÷ ;	2 5	5 54	8 8	34	0 6					80	8														
		7.	4 :	9 9	9 9	7 7	2 2	3 5	4 6		2 4					100													
		7 0	<u> </u>	÷ +	. K	, ₅	3 2	3,6	30		42	5.				8													
12 48		2 5	. F	5 5	2 -	2 8	3 2	25	28		38					8													
16 90		1 2	5 6	5 5	1	2 8	2 23	25	78		38		54	63	74	28	9												
		12	13	5	17	8	23	25	27		37						8												
4 20 80		12	13	15	17	19	22	24	27		36																		
		12	13	15	17	19	22	24	27		35																		
64		12	13	15	17	19	22	24	28		34						83			8									
		12	13	15	17	18	22	24	26		34						80			8									
9		12	13	15	17	19	22	24	56		34	39			22		78	06	8	8									
		12	13	15	17	19	23	24	58		34			49			11			8									
5		12	13	15	17	19	22	24	28		34		44				78			8							ì		

Table E.4: Proposed Separation Tables for FHC 3 (cont'd)

The second secon	From Table 1	Fire Hazard Category		FE		.,	8			Emissivity Limiting R	sivity ng Radi	ation			51 H	- 5	kW/m^	ņ			Flame	Flame Projection Limiting Distance	Flame Projection Distance Limiting Distance	nce				۳			E E	
Formation 1 15 2 25 2 25 4 4 4 5 5 6 6 7 7 6 9 10 12 14 16 16 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Secondary Seco	Firecell Temperature		F	н	100	C			Emitte	ed Radi	ation				150.0	kW/m	2										١				
15 2 25 2 25 2 25 4 45 5 6 7 6 9 10 10 14 14 15 25 25 2 25 2 25 2 25 2 2	Summer of the property of th	Radiation Distance Separation Distance =	S	- 7	1.5	3.2	3.5	60 A	3.5		4.5 5.5	v. eo	9 ~	r 80	& &	9 01	5 =	5 5	4 5	16	8 6	2 2	23	24	26	28	31	32	35	36	38	6 4
5	Fig. 18	diation + Projection) Indary Distance =	e S.Lx	-	5.	2	2.5	က	3.5		4.5	ß	ø	7	€0	6	5	12	4	18	18	8	22	24	56	58	99	32	£ .	. 36	38	6
Mark	N A A	stangle Size						Perm	itted ung	rotecte		م						BOUN	JARY S	EPARA	TION T	ABLES	USING	NITIN	G DIST,	ANCE	ONCER	<u></u>				
1 5 1 5 2 10 10 10 10 10 10 10 10 10 10 10 10 10	1 5 5 7 7 8 7 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	≯ E							17															-			78					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- •		24	38	20	67	88	9 3	Q	8	8	\$															4 46 46	4	ā		
1	1	O 6		5 t	. P	3 5	8 2	3 5	8 4	8 4	8 8	8 8	3 8	\$																		
8 5 25 25 12 12 14 15 15 12 12 12 12 12 12 12 12 12 12 12 12 12		, 4		2	15	\$	23	98	. 33	8	45	53	72	83	8																	
8 90 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		12	7	9 !	19	23	72	33	8	45	29	2	26	8 8																
1	1	ω (2 5	2	5 1	; 9	5 5	3 8	R 3	8 8	8 6	5 5	8 2	2 8	3 2	ğ	Ş														
14	1	۶ ۽		7 5	. E	5 4	- 49	6 60	8 8	3 8	98	8 8	37	8 4	2 22	8 8	8 2	8														
1	14 70 12 13 14 15 17 19 12 2 24 25 25 25 25 25 25	12		1	13	4	4		2	22	25	28	34	42	20	9	7	96	9													
1	1	72		12	13	14	15		19	22	24	27	32	33	41	22	64	88	8													
10 10 11 12 14 15 17 19 21 25 25 30 34 42 46 56 73 80 100 20 150 11 12 14 15 17 19 21 25 25 30 34 42 46 56 73 80 100 20 250 11 12 14 15 17 19 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20	19		12	13	14	15		19	2	23	28	3	37	4	51	90	79	<u>\$</u>													
20 11 12 14 15 17 18 25 25 25 26 27 71 100 100 40 200 11 12 14 15 17 18 20 22 24 28 35 41 45 68 17 100 100 90 200 11 12 14 15 17 18 20 22 24 28 35 41 46 56 61 70 91 100 100 90 300 11 12 14 15 17 16 20 22 24 28 30 46 <	20 10 11 12 14 15 17 18 27 23 24 25 25 25 25 25 25 25	18		12	12	4	15	1	18	2	33	52	S	38	45	48	28	73	83	8												
10 1 20 11 12 14 15 17 18 20 22 24 28 32 37 41 46 56 17 18 100 100 100 100 100 100 100 100 100	10 200 11 12 14 15 17 18 20 22 24 28 32 34 14 45 54 64 75 89 100 100 100 100 100 100 100 100 100 10	8		12	2 :	± :	\$ 5	: 1	19	2 2	2 3	5 2	8 8	S 3	4 8	47	24	8	84	8 5	5	٤										
1	1	g :		Ξ:	2 5	7 ;	2	- :	200	8 8	3 5	7 6	9 8	3 8	9 6	3 .	04	8 4	7 6	6 6	3 5	3 5										
1 6	90 900 900 11 12 14 15 17 16 20 22 24 28 36 40 45 54 63 77 68 94 100 900 900 900 900 900 900 900 900 900	6 7		= \$	2 \$	7 7	£ £	2 -	2 4	3 8	3 8	2 4	8 8	3 6	38		54	5 45 4 45	9 6	22	88	88	8									
1	1	8 6		Ξ	1	14	15	17	8		22	54	28	32	36	40	45	54	63	73	83	94	8									
100 500 11 12 14 15 17 18 20 22 24 29 39 40 44 53 61 70 79 68 97 100 1	100 500	8		Ξ	12	7	45	17	18		22	24	28	32	38	40	44	53	62	7	80	8	8	001								
1 6 5 24 35 48 63 79 99 100 2 12 12 15 20 26 33 42 51 62 74 87 100 3 18 12 13 16 20 24 30 36 43 51 60 81 100 6 36 12 13 15 17 20 24 29 34 40 47 50 100 10 60 11 12 13 15 17 19 22 28 30 44 45 57 71 87 100 11 12 13 14 16 17 10 22 28 30 34 45 57 71 87 100 11 12 13 14 16 17 10 22 28 30 34 45 57 71 87 100 11 12 13 14 16 17 19 21 23 28 33 40 47 54 28 81 100 11 12 13 14 15 17 18 20 22 23 24 0 48 52 100 11 12 13 14 15 17 18 20 22 28 30 34 45 57 71 87 100 10 60 11 12 13 14 15 17 18 20 22 28 30 34 45 57 71 87 100 10 60 11 12 13 14 15 17 18 19 21 24 28 31 36 46 54 68 10 100 10 60 11 12 13 14 15 17 18 19 21 24 28 31 36 46 54 68 10 100 10 10 10 11 12 13 14 15 16 18 18 19 21 24 28 31 34 45 57 74 85 88 100 11 12 13 14 15 16 18 18 19 21 24 28 31 34 45 53 84 65 88 100 11 12 13 14 15 16 18 18 19 21 24 28 31 34 45 53 84 65 88 100 11 12 13 14 15 16 18 18 19 21 24 27 31 34 45 53 84 65 78 89 86 100 11 12 13 14 15 16 18 18 19 21 24 27 30 34 37 44 57 58 68 87 75 88 80 100 11 12 13 14 15 16 18 18 19 21 24 27 30 34 37 44 57 58 68 87 75 88 80 100 11 12 13 14 15 16 18 18 19 21 24 27 30 34 37 44 57 58 68 87 75 88 80 100 11 12 13 14 15 16 18 18 19 21 24 27 30 34 37 44 57 58 68 87 75 88 80 100 11 12 13 14 15 16 18 18 19 21 24 27 30 34 37 44 57 58 68 87 75 88 80 100 11 12 13 14 15 16 18 18 19 21 24 27 30 34 37 44 57 58 68 87 75 88 80 100 11 12 13 14 15 16 18 18 19 21 24 27 30 34 37 44 51 58 88 87 75 88 80 100 11 12 13 14 15 16 18 18 18 18 18 20 24 27 30 34 37 44 51 51 59 68 74 81 89 75 75	1 6 6 24 35 48 63 79 89 100 3 18 18 20 28 33 42 51 62 74 87 100 4 24 24 11 12 13 16 20 28 33 42 51 60 81 100 6 38 10 10 11 12 13 16 18 21 25 29 34 45 57 71 87 100 10 60 11 12 13 14 15 17 19 21 22 28 32 34 45 57 71 87 100 11 12 13 14 15 17 19 21 22 28 32 34 45 57 71 87 100 12 72 11 12 13 14 16 18 21 22 28 32 34 45 57 71 87 100 13 18 108 11 12 13 14 16 17 19 21 22 27 28 32 34 45 57 80 100 14 84 11 12 13 14 15 17 18 21 22 27 28 32 38 40 47 54 56 88 100 15 10 10 10 11 12 13 14 15 17 18 12 12 22 27 28 32 38 40 41 56 77 89 100 16 10 10 11 12 13 14 15 17 18 19 21 22 27 28 32 38 40 41 56 78 89 100 17 11 12 13 14 15 17 18 19 21 22 27 28 32 38 40 41 56 78 89 100 18 10 10 11 12 13 14 15 17 18 19 21 22 27 28 32 38 40 41 56 78 89 100 18 10 10 11 12 13 14 15 17 18 19 21 24 28 32 39 44 55 56 66 77 88 99 100 19 10 10 10 11 12 13 14 15 16 18 19 21 24 27 31 34 45 57 48 55 66 77 8 89 100 10 10 10 10 11 12 13 14 15 16 18 19 21 24 27 31 34 45 57 68 80 100 10 10 10 10 11 12 13 14 15 16 18 19 21 24 27 30 34 45 55 66 77 8 89 100 10 10 10 10 11 12 13 14 15 16 18 19 21 24 27 30 34 74 51 58 95 100 10 10 10 10 11 12 13 14 15 16 18 19 21 24 27 30 34 47 51 58 59 66 74 81 89 97 10 10 10 10 10 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 58 89 100	8		Ξ	12	4	15	17	18	8	22	24	28	32	38	9	4	23	19	2	18	88	84	8								
2 12 15 20 26 33 42 51 60 81 100 3 16 10 24 24 24 40 47 60 81 100 6 36 11 10 20 24 26 81 100 6 36 12 10 11 12 14 16 22 28 34 46 56 81 100 10 60 11 12 14 16 12 22 28 34 46 56 81 100 12 13 15 16 17 16 22 28 39 40 46 56 81 100 12 13 14 16 17 19 22 24 30 36 41 57 44 56 81 100 12 13 14 16 17	2 12 16 16 20 26 33 42 51 62 74 87 100 4 24 16 10 100 <td>-</td> <td></td> <td>24</td> <td>35</td> <td>48</td> <td>63</td> <td>79</td> <td></td> <td>8</td> <td></td>	-		24	35	48	63	79		8																						
3 18 13 16 20 24 30 36 43 51 60 81 100 4 24 12 14 17 20 24 29 34 40 47 62 80 100 6 36 36 36 34 40 47 61 80 100 8 46 36 46 56 68 81 100 10 60 11 12 14 15 17 20 22 25 29 36 46 56 68 81 100 10 60 11 12 14 15 17 20 22 25 29 40 46 56 68 81 100 11 10 12 14 15 17 19 21 22 22 29 39 40 47 54 81 91	3 18 19 19 19 20 24 30 43 51 60 81 100 4 24 11 24 11 21 24 29 24 40 41 80 100 6 38 12 13 15 17 16 22 28 30 44 57 100 10 48 11 12 14 15 17 20 22 28 30 46 86 81 100 10 60 11 12 14 16 17 20 22 23 30 46 56 88 100 12 13 14 16 17 19 21 23 24 46 56 88 100 14 86 11 12 13 14 16 17 18 21 23 24 46 56 <td>~ ~</td> <td></td> <td>15</td> <td>20</td> <td>26</td> <td>33</td> <td>42</td> <td></td> <td>62</td> <td>74</td> <td>87</td> <td>100</td> <td></td>	~ ~		15	20	26	33	42		62	74	87	100																			
4 24 12 14 17 20 24 29 34 40 47 62 80 100 5 30 12 14 17 26 22 26 39 51 68 81 100 8 48 11 12 14 17 19 21 25 29 36 46 56 68 81 100 10 60 11 12 14 16 18 21 22 29 36 46 56 68 81 100 10 60 11 12 14 16 18 21 22 22 24 37 44 51 68 83 100 14 14 16 17 18 21 22 22 24 44 51 68 85 100 18 10 10 10 10 10 <td>4 24 12 14 17 20 24 29 34 40 47 62 80 100 6 36 36 16 34 36 51 86 81 100 8 48 11 12 14 15 17 20 22 25 29 34 46 56 68 81 100 10 60 11 12 14 15 17 20 22 25 29 36 46 56 88 81 100 10 60 11 12 13 14 16 17 20 22 22 29 30 40 46 56 88 81 100 16 84 11 12 13 14 16 17 18 21 22 22 28 33 40 47 56 88 100 <tr< td=""><td>ဧ</td><td></td><td>13</td><td>16</td><td>20</td><td>24</td><td>3</td><td></td><td>43</td><td>5</td><td>9</td><td>8</td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<></td>	4 24 12 14 17 20 24 29 34 40 47 62 80 100 6 36 36 16 34 36 51 86 81 100 8 48 11 12 14 15 17 20 22 25 29 34 46 56 68 81 100 10 60 11 12 14 15 17 20 22 25 29 36 46 56 88 81 100 10 60 11 12 13 14 16 17 20 22 22 29 30 40 46 56 88 81 100 16 84 11 12 13 14 16 17 18 21 22 22 28 33 40 47 56 88 100 <tr< td=""><td>ဧ</td><td></td><td>13</td><td>16</td><td>20</td><td>24</td><td>3</td><td></td><td>43</td><td>5</td><td>9</td><td>8</td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	ဧ		13	16	20	24	3		43	5	9	8	8																		
5 30 12 13 15 18 21 25 29 34 39 51 68 83 100 8 48 11 102 13 15 17 19 22 28 30 34 45 57 71 87 100 10 60 11 12 13 15 18 18 21 22 28 30 34 45 57 71 87 100 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 11 12 13 14 16 17 19 21 22 27 24 30 36 43 51 60 81 100 11 12 13 14 15 17 19 21 22 27 28 33 40 47 54 89 85 100 12 0 120 110 12 13 14 15 17 18 20 22 28 30 40 48 59 100 13 14 12 13 14 15 17 18 20 22 28 30 40 48 59 100 14 0 240 11 12 13 14 15 17 18 19 21 24 28 31 36 40 50 81 100 100 15 0 240 11 12 13 14 15 16 18 19 21 24 27 31 34 38 48 54 85 100 16 0 300 11 12 13 14 15 16 18 19 21 24 27 31 34 38 48 55 86 78 88 100 16 0 480 11 12 13 14 15 16 18 19 21 24 27 31 34 35 59 67 75 83 92 100 17 0 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 77 \$\infty{\text{Constraints}} \text{Constraints}	5 30 12 13 15 18 21 25 29 34 39 51 68 83 100 8 36 36 36 46 57 18 100 10 60 11 12 14 16 12 23 26 22 24 30 34 45 57 100 12 13 16 18 21 22 22 24 30 34 45 57 100 12 13 16 18 21 22 22 24 30 36 43 51 60 81 100 18 10 11 12 13 14 16 17 19 21 22 22 24 44 51 60 81 100 20 120 13 14 15 14 16 16 16 22 22 </td <td>4</td> <td></td> <td>12</td> <td>14</td> <td>17</td> <td>8</td> <td>24</td> <td></td> <td>34</td> <td>9</td> <td>47</td> <td>85</td> <td>8</td> <td>9</td> <td></td>	4		12	14	17	8	24		34	9	47	85	8	9																	
8 36 15 17 18 12 2 28 30 34 45 57 77 87 100 10 60 11 12 13 15 17 18 22 28 30 34 45 57 77 87 100 11 12 13 14 16 18 20 22 25 24 30 36 48 58 11 100 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 11 12 13 14 16 17 19 21 22 24 30 36 42 48 62 100 120 110 12 13 14 15 17 18 20 22 28 31 40 47 54 51 60 81 100 130 140 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 140 240 11 12 13 14 15 17 18 19 21 24 28 31 35 39 47 56 88 100 150 300 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 51 69 67 75 83 92 100 150 300 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 51 89 77 75 83 92 100 150 800 380 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 89 87 75 83 92 100	8 38 112 13 15 17 18 22 28 30 34 45 57 77 18 7100 10 80 11 12 13 15 17 18 22 25 29 36 48 58 88 81 100 11 12 13 15 14 16 18 20 22 24 30 36 43 51 60 81 100 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 11 12 13 14 16 17 19 21 23 28 33 40 47 54 72 93 100 11 12 13 14 15 17 18 20 22 24 30 36 43 51 60 81 100 120 110 12 13 14 15 17 18 20 22 24 30 35 40 46 59 73 81 100 100 130 140 40 240 11 12 13 14 15 17 18 19 21 24 28 31 35 39 47 56 88 100 14 10 12 13 14 15 16 18 19 21 24 28 31 35 39 47 56 88 100 15 20 20 11 12 13 14 15 16 18 19 21 24 27 31 34 35 36 40 51 61 81 81 9 21 24 27 31 34 35 36 40 51 61 81 81 9 21 24 27 31 34 45 51 89 87 75 88 98 100 10 80 480 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 77 81 89 97 \$\mathrm{California}{\text{60}} \text{90} \text{90} \text{90} \text{90} \text{90} \text{11} 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 89 97 \$\mathrm{California}{\text{60}} \text{90} 9	2		12	13	15	18	5		8	34	36	25	8	83	6 1																
10 60 11 12 13 15 16 18 21 23 26 32 40 48 58 68 83 100 11 72 13 14 16 18 20 22 24 30 36 43 51 60 81 100 11 8 108 11 12 13 14 16 17 19 21 23 28 33 40 47 54 72 93 100 11 12 13 14 15 17 19 21 22 27 32 37 44 51 66 85 100 12 12 13 14 15 17 18 20 22 28 31 36 42 48 62 78 97 100 100 10 10 240 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 10 240 11 12 13 14 15 16 18 19 21 24 28 31 35 38 46 53 81 100 10 240 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 89 100 10 80 480 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 88 90 10 80 480 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97	10 40 11 12 13 15 16 18 21 23 26 32 40 48 58 68 83 100 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 1100 11 12 13 14 16 17 19 21 23 28 33 40 47 54 72 93 100 100 11 12 13 14 15 17 18 20 22 26 30 35 40 86 50 73 91 100 100 100 100 11 12 13 14 15 17 18 19 21 24 28 31 35 39 47 56 66 76 88 100 100 100 100 100 11 12 13 14 15 16 18 19 21 24 28 31 35 39 47 56 69 76 89 100 100 100 100 100 100 11 12 13 14 15 16 18 19 21 24 27 31 34 38 46 54 83 100 100 100 100 100 100 100 100 100 10	ω .		12	5 5	2 3	- 4	5 5	3 8	3 8	S %	4 8	£ %	ک م	- 8	98	3 2	ξ														
12 72 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 14 84 11 12 13 14 16 17 19 21 23 28 33 40 47 54 72 93 100 16 96 11 12 13 14 15 17 19 21 22 27 32 37 44 51 66 85 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 00 100 20 140 240 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 20 180 11 12 13 14 15 16 18 19 21 24 28 31 35 36 40 50 61 73 86 100 20 180 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 89 100 20 10 0 00 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 100 20 10 0 00 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 89 89 77 88 89 100 20 10 0 0 0 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 89 89 77 88 89 100 20 10 0 0 0 11 12 13 14 15 16 18 19 21 24 27 30 34 37 48 51 88 89 87 70	12 72 11 12 13 14 16 18 20 22 24 30 36 43 51 60 81 100 14 84 11 12 13 14 16 17 19 21 23 28 33 40 47 54 72 93 100 16 96 11 12 13 14 16 17 19 21 22 27 32 37 44 51 66 85 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 00 100 20 140 240 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 20 180 11 12 13 14 15 16 18 19 21 24 27 31 35 38 45 53 61 69 78 89 100 20 180 480 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 89 100 20 100 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 52	٠ 6		= =	12	. 65	5 5		2 8	3 1	2 2	78	32	5	84	88	88	83	100													
14 84 11 12 13 14 16 17 19 21 23 24 47 54 72 93 100 16 96 11 12 13 14 15 17 19 21 22 27 32 37 44 51 66 85 100 20 120 11 12 13 14 15 17 18 20 22 26 30 35 40 46 59 73 80 100 20 120 11 12 13 14 15 16 18 20 22 26 30 35 40 46 59 73 80 100 100 30 16 17 18 20 22 26 30 36 41 56 66 70 100 40 240 11 12 13 <th< td=""><td>14 84 11 12 13 14 16 17 19 21 23 28 33 40 47 54 72 93 100 16 96 11 12 13 14 15 17 19 21 22 27 32 37 44 51 66 85 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 80 100 100 30 180 11 12 13 14 15 16 18 20 22 28 30 35 40 46 59 73 81 100 100 40 240 19 21 24 28 31 35 34 47 56 66 76 76 78 89 100</td><td>12</td><td></td><td>Ξ</td><td>12</td><td>5</td><td>14</td><td></td><td>18</td><td>20</td><td>22</td><td>24</td><td>30</td><td>36</td><td>43</td><td>51</td><td>8</td><td>81</td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	14 84 11 12 13 14 16 17 19 21 23 28 33 40 47 54 72 93 100 16 96 11 12 13 14 15 17 19 21 22 27 32 37 44 51 66 85 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 80 100 100 30 180 11 12 13 14 15 16 18 20 22 28 30 35 40 46 59 73 81 100 100 40 240 19 21 24 28 31 35 34 47 56 66 76 76 78 89 100	12		Ξ	12	5	14		18	20	22	24	30	36	43	51	8	81	8													
16 96 11 12 13 14 15 17 19 21 22 27 32 37 44 51 66 85 100 20 120 11 12 13 14 15 17 18 20 22 28 31 36 42 48 62 78 97 100 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 30 180 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 40 240 11 12 13 14 15 16 18 19 21 24 28 31 35 38 46 59 89 100 50 350 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 89 100 60 360 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 52 59 67 75 83 92 100 10 60 60 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 C-2	16 96 11 12 13 14 15 17 19 21 22 27 32 37 44 51 66 85 100 20 120 11 12 13 14 15 17 18 20 22 28 31 36 42 48 62 78 97 100 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 30 180 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 40 240 11 12 13 14 15 16 18 19 21 24 28 31 35 39 47 56 68 70 88 100 50 80 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 89 100 10 80 480 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 40 10 80 60 0 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 40	- 14		-	12	13	14	18	17	19	21	23	28	33	8	47	54	72	93	8												
18 108 11 12 13 14 15 17 18 20 22 28 30 35 40 46 62 78 97 100 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 30 180 11 12 13 14 15 17 18 19 21 24 28 31 35 39 47 56 86 100 50 300 11 12 13 14 15 16 18 19 21 24 27 31 34 86 45 53 61 69 78 89 100 60 380 11 12 13 14 15 16 18 19 21 24 27 31 34 35 59 67 75 89 97 C- 100 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 52 59 67 75 83 92 100 100 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 C-	18 108 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 20 120 11 12 13 14 15 17 18 20 22 28 30 35 40 46 59 73 91 100 100 30 180 11 12 13 14 15 17 18 19 21 24 28 31 35 39 47 56 86 100 40 240 11 12 13 14 15 16 18 19 21 24 27 31 34 46 54 83 72 82 82 100 80 480 11 12 13 14 15 16 18 19 21 24 27 31 34 35 59 67 75 83 92 100 10 60 90 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 40	16		Ξ	12	13	14	15	17	19	2	23	27	32	37	44	51	99	82	8												
20 120 11 12 13 14 15 17 18 20 22 26 30 35 40 46 59 73 91 100 100 30 180 11 12 13 14 15 16 18 19 21 24 28 35 39 47 56 68 100 50 300 11 12 13 14 15 16 18 19 21 24 27 31 34 36 45 65 66 76 88 100 60 360 11 12 13 14 15 16 18 19 21 24 27 31 34 36 45 55 66 77 88 86 100 80 480 11 12 13 14 15 16 18 19 21 24 <	20 120 11 12 13 14 15 17 18 20 22 26 30 35 40 46 59 73 91 100 100 30 180 11 12 13 14 15 17 18 19 21 24 28 33 47 56 66 76 88 100 50 300 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 76 88 100 60 360 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 76 100 600 11 12 13 14 15 16 18 <	18		1	12	13	14	15	17	18	20	2	56	31	36	45	48	62	78	46	8	8										
30 180 11 12 13 14 15 17 18 19 21 24 28 32 36 40 50 61 73 86 100 40 240 11 12 13 14 15 16 18 19 21 24 28 31 35 39 47 56 66 76 88 100 50 300 11 12 13 14 15 16 18 19 21 24 27 31 34 36 46 64 63 72 89 100 60 360 11 12 13 14 15 16 18 19 21 24 27 31 34 36 65 59 67 75 83 92 100 60 400 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 52 59 66 74 81 89 97 40	30 180 11 12 13 14 15 17 18 19 21 24 28 32 36 40 50 61 73 86 100 40 240 11 12 13 14 15 16 18 19 21 24 28 31 35 39 47 56 66 76 88 100 50 300 11 12 13 14 15 16 18 19 21 24 27 31 34 36 46 64 63 72 78 2 92 100 60 360 11 12 13 14 15 16 18 19 21 24 27 31 34 36 53 61 69 76 88 98 100 60 400 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 52 59 66 74 81 89 97 40	ឧ		Ξ	12	13	4	15	11	18	20	23	28	8	32	40	46	23	73	91	8	8										
40 240 11 12 13 14 15 16 18 19 21 24 28 31 35 39 47 56 66 76 88 100 50 300 11 12 13 14 15 16 18 19 21 24 27 31 34 38 46 54 63 72 82 92 100 60 360 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 88 98 100 80 480 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 52 59 67 75 83 92 100 100 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 52	40 240 11 12 13 14 15 16 18 19 21 24 28 31 35 39 47 56 66 76 88 100 50 300 11 12 13 14 15 16 18 19 21 24 27 31 34 38 46 54 63 72 82 92 100 60 360 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 88 95 100 80 480 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 52 59 67 75 83 92 100 100 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 5	8		Ξ	12	13	14	15	4	18	19	7	24	28	32	36	9	8	6	73	98	8										
50 300 11 12 13 14 15 18 18 19 27 24 27 31 34 38 46 54 63 72 82 82 100 60 360 11 12 13 14 15 18 18 19 21 24 27 31 34 38 45 53 61 69 78 88 98 100 80 480 11 12 13 14 15 18 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 5	50 300 11 12 13 14 15 16 18 19 27 24 27 31 34 38 46 54 63 72 82 82 100 60 360 11 12 13 14 15 16 18 19 21 24 27 31 34 38 45 53 61 69 78 88 96 100 80 480 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 30	4		Ξ	12	13	7	15	18	18	19	5	54	58	3	32	66	47	28	8	9 9	88										
80 480 11 12 13 14 15 16 18 21 24 27 30 34 37 44 51 59 66 74 81 89 97 🗠	80 480 11 12 13 14 15 16 18 21 24 27 30 34 37 44 51 59 66 74 81 89 97 C2	S 8		Ξ;	2 5	£ ;	7 ;	15	9 9	∞ •	<u> </u>	5.7	2 2	7 6	5 6	8 8	8 8	4	7 E	2 2	7 9	7 8Z			5							
100 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 🗠	100 600 11 12 13 14 15 16 18 19 21 24 27 30 34 37 44 51 59 66 74 81 89 97 52	2 8		= ;	¥ \$	2 \$	•	5 4	2 4	2 4	5 0	7 7	7,0	3 6	5 6	5 2	3 6	77	2 6	. 0	24	2 12	3 8		2 5			33				
		8 5		:	1 5	5 5	7	5 45	, E	6	19	. 2	24	27	8 8	34	37	44	51	26	99	74	81			S						
	Filename: Lxareas.xis	2				2		2	2															- 1					,			1

Table E.4: Proposed Separation Tables for FHC 3 (cont'd)

								Limitin	Limiting Radiation	noi				150.0	16 kW/m^2	21. 15.1			gunual.	Distanc	Limiting Distance				i				
irecell Temperature		F		1003	U				200	5							:	,		5		24	96						
Radiation Distance Separation Distance	e S	- 6	15	0 0	3 25	е 4	VI", OS	▼ W	4 0 10 10	e e	9	~ &	യ ത	~ 0	e =	13	4 5	17	9 6	3 5	3 2	52	27	58	31	33	35	37	39 41
Radiation + Projection)	ou)	-	15	7	25	ო	9. O	4	44 ^I	VI	ID	٧	20	6	10	12	14	16	8	20	22	24	56	28	30	32	34	36	38 40
Rectangle Size							A see he he he he he he he he	patrato	9						'														
						E E	dun pati	rotecter	e al de	_																			
т ду																													
7		24	35	47	8	75	82	8																					
2 - 14		5	8	52	32	39	48	22	68	42	8																		
		13	16	19	23	28	33	9 ;	47	5 5	72	83	8 6	8															
4 28		2 5	4 5	19	9 ;	3 3	33 57	27	3 6	35	48	26	73	8 68	100														
		7 5	2 5	2 5		1 8	21	24	27	31	4	20	62	92	16	8													
		=	5 22	13		16	18	17	23	28	33	40	49	09	7	26	8												
		=	12	13	14	15	17	19	21	23	8	35	42	8	9	5 6	3 2	5											
12 84		=	12	13	4	15	18	\$ (2 5	5 5	56	32	8 4	4 45	20 27	2 %		8 8											
14		=	2	15	£ :	12	9 9	: :	8 0	3 6	2 6	28	33 8	38	44	57	73	16	8	100									
16	2	= ;	12	12	5 6	4 2	9 4	17	5 6	200	3 2	27	3 5	38	42	54	88	84	8	8									
7 18 128	D C	= =	4 5	4 5		4	15	17	18	20	23	58	30	35	9	15	8	78	82	8	,								
2 6		-	12	12		4	15	16	18	18	23	25	28	32	35	43	23	63	74	87	8 8	ć	8						
3 4		=	12	12		14	15	18	11	19	51	24	27	30	34	4 :	8 ;	22	99	9 6	8 8	0 0	3 8	100					
8	0	=	12	12		14	15	16	11	18	21	24	27	8 8	33	0 6	4 0	50	70	2 2	75	84	93	100					
09	0	-	12	12		4	15	18	17	6 6	5 5	24	27	30	33	30	45	2 5	8 8	92	72	28	87	95	8				
	0	=	12	12	13	4	15	16	11	18	5	57	7	8 6	2 6	000	? ;	. 4	22	83	1 0	77	84			100			
9	Q	1	12	12		14	15	9	17	9	21	24	27	30	32	Š	7	5	5	3	2		;						
•		PC.	76	48	65	73	88	8																					
- 0		1,5	5 8	35	3 6	38	45	54	63	74	16	8													,				
V 6		13 5	15	3 6	22	27	32	37	44	5	99	82	8																
2 4 23		12	14	16	19	22	52	30	34	39	51	92	81	88	100														
. 40		12	13	15	17	19	22	25	53	33	45	23	99	80	96	8													
60		=	12	14	15	17	20	22	25	28	38	46	58	68	81	8 5													
80	**	=	12	13		18	17	6	22	24	8 8	37	42	53	63	2 6	3 8	5											
0	0	=	12	12		5	9	9 5	20	2 2	9 7	35	2 2	0 5	50	2 6	80	8											
	90	Ξ	12	12	13	4	15	1,	20 0	2 \$	23	27	7 6	3 2	, CA	92	77	89	8	8									
4	112	Ξ;	12	12		4 4	ט גָּ	2 4	2 4	6 6	22	25	30	34	39	51	92	18	88	100									
9 9	128	= ;	= ;	12		4 4	5 5	2 90	11	18	21	25	28	32	37	48	90	74	96	100									
2 6	4 4 4		:	12		4	•	16	17	18	21	24	27	31	35	45	28	69	83	68	8								
8 8	240	1	11	12		13	i.	15	16	17	50	22	25	28	31	8 8	94 6	9	22	0 6	0 2	3 8	10	200					
40	320	=	=	12		13		15	18	17	19	22	24	27	30	36	54	2 6	8 3	6	2 0	2 6	, a		8				
8	400	=	11	12	13	13		15	18	17	18	22	5.4	27	58	35	4 6	5 4	, ç	70 05	98	74	82	6	66	100			
09	480	=	1	12		13	*****	15	18	- :	8 9	7 6	47	17	600	2 6	30	45	5 5	57	63	69	26				100		
80	640	-	=	12		13	4	15	16	<u> </u>	0 0	7 6	44	0, 0	200	5 6	3 6	45	50	28	19	87	73			93	9	100	
		,	**	*		+		2	18	-	20	77	57	07	67	1	0	-	2										

Table E.5: Proposed Separation Tables for FHC 4

נות נוסדמות המובחת ל							5	imiting F	Limiting Radiation			п		16 kW/m^2	'm^2		_	Limit	Limiting Distance	nce					ت		-	E	
Radiation Distance Separation Distance = (Radiation + Projection) Boundary Distance =	S B Sn) S-Lx B	- 6 -	2.5	2 8 2	2.5 3.5 2.5	м 4 м	8. 8. 8. 8. 8.	4 m 4	5.5 5.5 5.	ט מט	9 2 9	8 9 7 8	8 8 10 8 8	5	1 13 22 2	3 15 2 14	1 19	6 8	3 2 8	3 2 2	25 24	27 27 28	29 29 29	35 8	33 33	35 35	38	38 39	4 4
Rectangle Size						Permitte	d unpro	Permitted unprotected area %	rea %						BOI	BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT	YSEPA	RATION	TABLE	SUSING	LIMIT	NG DIS	TANCE	CONCE	ы				
H W Ae																													1
+ ·		88	4 :	8 8	٤																								
1 2 3 2 3 3 3 3		2 23	36	8 8	3 25	8																							
		5 5	35	9 4	63	83	8 8	8																					
9 2		5 5	3 8	3 4	5 5	88	88	8	% !																				
		5 3	8 8	39	8 2	62	75	9 8	9 7	9																			
1 10 10	2 120	5 8	8 8	88	6 4	88	69	80	92	9																			
		2	29	38	47	57	67	78	88		0																		
		2 8	2 2	38	4 47	58	2 99	. 92	8 8		8 8																		
	20 20	8 8	29 62	3 8	47	28	99	75	82	88	8 5																		
1 30 30		8	28	38	47	8 2	S 8	74	8 84		8 8																		
	0.1	2 8	2 2	8 8	74	8 8	8 8	74	83		8																		
		8 8	8	38	47	28	92	74	83														4 00						
	0	8	53	38	4	8 8	65 85	7 4	£ 62																				
	8	20	28	38	4	8	3		3																				
	,	52	44	69	8																								
7 7 7		17	28	38	24	74	86	8 5	8																				
	9	7 3	5 5	29	34 40	52	20 00	69	8 8	9																			
4 v	8 2	4 6	18	23	3 8	39	48	29	7	85	9				Manager and														
9	12	13	11	22	28	38	44	23	2 G	63	83																		
ω ;	16	5 5	: :	2 2	28	3 5	37	5 5	8	22			100																
5 5	5 4	5 5	11	2	52	98	35	4	47	54																			
14	8	5	17	21	52	8 8	32	4 8	46	25 25		8 Z	6 6	3 8															
16	32	13	; 4	2 2	2 2	3 8	34	8 6	3 4	8 64																			
æ (90	2 \$	= :	7 7	3 %	2 8	34	38	44	49																			
8 8	2 9	2 2	- 92	8	32	8	33	38	43	47					8 6	8 5													
3 4	0	13	18	8	52	83	33	38	42	4						3 8													
8	8	13	18	2 3	52	8 8	33	38	4 5	747						8													
9	20	13	18	8 8	2	2 8	3 8	0 %	42	47						00													
2 80 1	200	5 5	5 5	8 8	25	29	33	38	42	47	56	65				8													

Table E.5: Proposed Separation Tables for FHC 4 (cont'd)

				Limit	ng Rad	ation			н	-	6 kW/n	٦,٠			Ē	Limiting Distance	tance					ř	н	-	Ε
ç	1053 C			Emit	Emitted Radiation	ation			п	175	175.0 kW/m^2	n^2			,					1					
3 8	3.5	w 4	3.5	4 0	5.5	rc 60	8 7	r 80	ထေးတ	ø 5	5 5	2 5	15	16	8 6	20 21 21	22 23	24 25	28	28	33	32	34	36	38
2	2.5	e	3.5	4	4.5	S.	60	7	80	6	9	12	4	16	48	3 20	22	24	28	28	30	32	34	36	38
		Perm	litted un	Permitted unprotected area %	darea	_ <u>_</u>																			
																								1	
53	75																								
52 53	29 49	38	69	87	§ 4	88	9																		
19	25				58	20	98	\$		•															
1 18	2 2			4 6	49	58	8 8	§ §																	
- 9	4 6				37	43	22	23 22	9 8	5															
18	19				34	38	20	63																	
19	18				35	37	40	57		8 8		\$ 5													
t t	£ 4	2 2			F F	S 5	4 4	2 2			3 8														
. .	2 80	2 72			8	3 8	4.4	49			79														
15	18	72			9	33	4	48			75														
15	18	.21			53	32	38	45		29	67	8	8												
15	4	8 8			8 8	32	38	44			8 8			8 8											
. 45	. 6	2 8			8 8	32	8 8	4	8 8		83														
15	18	8			8	32	38	44	2		62														
15	18	8			53	32	38	44	20		62				5	S	~								
48	63	83	1																						
25	34	44			84	9																			
6 ;	52	£ ;	98		58	2 3	96	§ 5	9																
÷ ÷	5 5	9 6			5 6	7 9	4 9	20 0	3 5																
5 4	1 2	2 5			34	5 4	23	8 8	87	5															
4	16	18			8	34	4	28	69																
13	15		8		27	8	38	48	69		82	8												÷	
5 5	£ #	÷ ;	2 5		52	7 28	38	4 4	23		72														
5 5	5 5		2 0	3 5	7 7	27	32	36	46	5 K	8 8		8 5												
5	15	17	18		24	98	32	38	44	52	9		66	8											
13	15	17	19		23	28	31	37	43	20	24	74	93	8											
13	15	17	19		23	52	39	34	40	45	51		1	93											
13	15	17	18	21	23	25	59	34	33	44	49		71	84		8 8									
13	15	9	198	2 2	23	25	53	34	88 8	43	48		98	8 1											
5 5	5 5	9 9	e 4	8 8	23	25	5 73	9 9	38	£4 £	4 4		, d	7 4	80 8		3 5								
5 ;	0 4	0 9	9	8 8	2 5	2 2	A (3 6	0 0	7 .	;		3	2 1		0 0									
2									**	1	10		Y Y	15											

Table E.5: Proposed Separation Tables for FHC 4 (cont'd)

ire Hazar	Fire Hazard Category		FHC		4				Emissivity Limitina Ra	Emissivity Limiting Radiation	tion				16	1 16 kW/m^2	,			Flame	Projectii 1 Distan	Flame Projection Distance Limiting Distance	9 2				د ۵			EΕ	
Radiation Distance Separation Distanc	Radiation Distance	E	- 2	1.5	01 m	3.5	ω 4	3.5	4 W	5.5	တ တ	9 ~	r 8	ထော	ø 5	5 5	13	41 51	14	19 6	2 2	23 23	24	26	3 38	33 30	33	35	36	38	04 4
(Radiation + Project Boundary Distance	tion)	S-Lx m	-	1.5	2	2.5	က	3.5	4	4.5	2	မ	7	80	တ	0	12	14	16	18	20	22	24	56	28	30	32	34	- 98	38	40
Rectangle Size	Size						Permit	ted unp	Permitted unprotected area %	Jarea %							BOUNI	BOUNDARY SEPARATION TABLES USING LIMITING DISTANCE CONCEPT	EPARA	TION T.	ABLES	USING	LIMITIN	G DIST	ANCE	ONCE	14				
ΞE	W Ae m m^2																														
ហ	5		23	3	43	57	47	83	\$ £	;	t	\$				3															
יט ע	2 t		£ ±	8 7	. 23 18	2 2	8 3	8 8 8 48	g 1	. 4	8 8	3 8	\$																		
່ເດ	2 8		Ξ.	. 5	5	8	23	27	33	38	94	6	8	8																	
S	22		6 5	2 :	4 6	7 2	8 8	2 2	22 23	3 8	34 8	۲ 4	22	2 E	<u>8</u>	8															
n n			5 5	= =	2 2	4	5 6	19	2	52	58	36	46	28	69	82	5														
			9	Ŧ	12	14	5	æ :	8	8 3	22	33	8	4 8	8 8	69	2 8	8 8													
			₽ :	Ξ:	12	5 5	£ #		6 4	5 7	2 24	82 82	8 %	£ 5	7 2	ב על בי	3 6	3 8	Ş												
			5 5	= =	12 5	5 5	. t	. .	2 ₽	8	2 2	27	32 2	88	4	5 5	67	8 8	8												
			5 5	: Ξ	12	5	15	18		8	23	28	31	38	42	48	83	8	8	8	8										
			5	=	12	5	14	19	4	8	7	52	9	32	9	48	8	57	83	8	8										
37			9	=	12	5	7 :	e :	:	₽ ;	5 5	24	8 8	33	37	4 8	5 5	3 23	7 6	88 8	<u>8</u> 8	Ş									
s c	40 200		6	Ξ;	4 5	<u>6</u> 6	1 1	6 6	1 4	6 4	2 2	2 24	2, 28	E E	3 3	8 68	84 7	22 2	9 6	5 4	S 28	2 S	8								
			5 5	= ;	2 5	5 5	. 4	6	1	6 6	8	24	27	3 5	35	38	48	54	62	7	8	8	9								
			2 0	: #	12	5	<u>*</u>	92	11	49	8	24	27	33	34	88	45	S	6	69	11	82	94	ş							
	100 500		9	=	12	5	4	9	4	18	8	24	27	۳	34	38	45	23	8	88	75	83	92	8							
80	9		21	8	14	54	88	85	5																						
8	2 12		13	17	23	28	38	44	23	83	75	8																			
9			Ξ	4	17	5 !	52	ج ج	37	44	2	69 5	8 8	5 5	5																
5 0 00	3 24		= =	17	4 5	÷ 4	7 8	3 2	\$ K	4 8	₹ 8	S 4	25	3 6	8 2	8															
, 60			2 2	: =	12	4	1	; ₽	22	8	8	88	49	. 20	74	88	100														
9			2	Ξ	12	13	5		19	22	52	3	39	48	28	20	96	8													
60			9	2	= :	13	7		: 3	8 9	2 2	5 28	¥ 2	4 5	40	8	8 8	<u>8</u> 8	5												
6 0 4	12 72		우 \$	2 9	= =	2 5	4 5	ច ភ្	- *	6 4	2 8	2 2	5 K	34	4 6	د 4	3 E	2 2	3 5												
0 00			2 2	2 2	=	2 2	<u>.</u> 6	. . 5	. .	2 €	£	8	2 22	32	37	43	25	23	9	8											
. 60			2	9	F	12	13	14	18	4	19	22	56	31	36	41	53	. 87	83	8	8										
9			9	9	Ξ	12	5	4	18	11	19	22	26	30	34	39	8	63	78	84	8										
8	30 180		2	9	F	12	5	Ξ:	12	17	80	5 2	24	22	<u>ب</u> ج	S 3	& :	25 5	65	Z 8	8 8	<u>\$</u>	5								
တ ဇ	40 240		ę ;	₽ \$	= ;	5 5	. ÷	4 3	5 4	÷ ÷	2 4	7 5	3 %	77	2 8	3 %	9 6	6 8	S 4	8 8	2 5	8 8	2 g	3 g	901						
o «			2 5	2 5	= =	4 5	5 5	. 4	3 2	7	2 6	7 2	3 8	28	20 2	32	3 8	45	25	2 65	67	22	84	3 28	8						
· •	80 380		2 0	2 2	=	1 2	<u>.</u>	7	5 5	9	, ©	8	23	28	38	32	8	4	5	22	8	7	62	98		8					
9			2	9	Ξ	12	13	4	15	16	18	20	23	26	59	32	38	44	20	22	63	2	77	84		88	8	•			
																												Ī	Filename: Lxareas.xls	Lxarea	six.s
	A	4												No		.0												4		Νď	

Table E.5: Proposed Separation Tables for FHC 4 (cont'd)

The control of the co	900		" ;		1053 C	0			imiting mitted	Limiting Radiation Emitted Radiation			" "	-	16 kW/m^2 175.0 kW/m^2	//m^2			ij	Limiting Distance	tance					ے ا	,	-	E	
Farming to propose and area \$\text{A}\$ \$1.5 \$1.			-	1.5	8	2.5	е .	3.5	4 (6. 1	ומו	9 1																	80 60	04 4
Parmated unproducted were % 2. 30 days	ance ection,	E ×	~ ~	2.5	e (3.5	4 e	3.5	ro 4	ი 4 ი ი	n a	, 60																	38 88	04
1						.											200	× ×	OLLATIO	1441	VISU S:	MITE	ING	STANC	CONC	CEPT				
21 30 40 52 68 78 8 100	A A						ornitte 1	od unpro	rected																					
13 17 12 12 14 15 15 15 15 15 15 15	7		21	30	40	52	65	62	95				8																	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5		£ ±	7 5	22	27	8 8 8	29	34					2																
10 11 13 15 17 12 13 15 17 10 12 13 15 17 10 15 15 17 10 15 15 17 10 15 17 11 12 13 14 16 16 15 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	78		. 6	2 2	7 7	16	19	23	27														27 20							
10 11 12 14 18 18 20 23 27 24 24 25 25 24 24 25 25	35		9	Ξ	13	15	11	8	23								2 6						- 1							
10 10 11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	45		9 9	Ξ :	12	4 5	9	æ 4	2 5									0							=;					
10 10 11 12 13 14 15 17 16 22 27 22 28 44 60 10 100 100 100 100 100 100 100 100 1	8 5		2 5	2 5	= =	2 5	4 6	5 4	2 4										9											
10 10 11 12 13 14 15 16 16 17 20 23 30 35 4 16 4 16 17 100 10 11 11 12 13 14 15 16 16 17 20 23 27 31 30 4 6 55 17 100 10 11 11 12 13 14 15 16 17 20 23 27 31 30 4 6 55 17 100 10 11 11 12 13 14 15 16 16 17 20 23 27 27 31 30 4 6 55 17 100 10 11 11 12 13 14 15 16 16 17 20 23 27 27 27 20 31 31 40 100 10 11 11 12 13 14 15 16 16 10 20 23 24 24 26 25 27 27 20 20 27 45 26 20 20 20 20 20 20 20 20 20 20 20 20 20	2 8		2 0	2 0	· - F	: 2	5 5	4	15												_									
10 10 11 11 12 13 14 14 15 17 22 23 28 48 68 7 78 89 100 10 11 11 12 13 14 14 15 17 20 23 28 28 3 38 48 68 7 78 100 10 11 11 11 12 13 14 15 17 20 23 28 28 34 44 54 64 76 10 10 11 11 12 13 14 15 17 20 23 28 28 34 44 54 64 76 10 10 11 11 12 13 14 15 16 18 12 12 28 28 28 34 44 65 67 18 68 100 10 10 11 11 12 13 14 15 16 18 20 23 28 28 34 4 4 6 64 78 85 10 10 10 11 11 12 13 14 15 16 18 12 20 23 28 28 34 4 4 6 54 8 10 10 10 11 11 12 13 14 15 16 18 20 23 28 28 34 4 4 6 54 8 10 10 10 11 11 12 13 14 15 16 18 12 20 23 25 28 34 4 4 6 64 10 10 10 11 12 13 14 15 16 18 20 23 28 28 34 4 8 68 10 10 10 10 11 12 13 14 15 16 18 20 23 28 28 34 4 8 68 10 10 10 10 11 12 13 14 15 16 18 20 23 28 28 34 4 8 68 10 10 10 10 11 12 13 14 15 18 18 18 22 25 28 24 24 6 6 6 10 10 10 10 10 11 12 13 14 15 18 18 18 22 25 28 24 44 66 18 10 10 10 10 11 12 13 14 15 18 18 18 18 22 25 28 24 44 66 18 10 10 10 10 11 12 13 14 15 18 18 18 18 22 25 28 24 44 66 18 10 10 10 10 11 12 13 14 15 18 18 18 18 18 18 18 18 18 18 18 18 18	86		2 2	9	÷	12	5	4	15																					
10 10 11 11 12 13 14 15 17 20 23 27 31 34 45 56 77 86 70 100 10 10 11 11 12 13 14 15 14 15 10 23 22 3 2 3 3 3 45 56 77 86 9 100 10 10 11 11 12 13 14 15 16 16 18 21 24 27 20 37 4 5 56 66 9 100 10 10 11 11 12 13 14 15 16 16 18 27 24 27 29 3 37 4 5 56 96 96 70	112		9	10	£	F	12	13	15												•									
10 10 11 11 12 13 14 15 17 20 2 3 2 3 0 3 4 4 5 4 8 7 81 7 100 10 10 11 11 12 13 14 15 17 20 2 3 2 2 0 3 3 4 4 5 4 8 6 7 81 7 100 10 10 11 11 12 13 14 15 10 16 18 21 2 2 2 2 2 3 3 3 3 4 4 5 6 4 8 9 9 100 10 10 11 11 12 13 14 15 10 18 12 2 3 2 2 2 3 3 3 3 4 4 5 6 4 8 9 9 100 10 10 11 11 12 13 14 15 10 18 12 2 3 2 2 2 2 3 3 3 3 4 4 9 6 6 9 9 100 10 10 11 11 12 13 14 15 10 18 10 2 3 2 2 2 2 3 3 3 3 4 4 9 6 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 12 13 14 15 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 11 11 12 13 14 15 10 13 14 15 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 10 11 11 12 13 14 15 10 10 10 10 10 10 10 10 10 10 10 10 10	128		9	10	#	F	12	13	14																					
10 10 11 11 12 13 14 15 16 16 18 21 24 37 30 35 44 6 65 74 6 66 57 14 6 66 17 6 66 100 10 10 11 11 12 13 14 15 16 16 18 21 23 28 28 35 44 6 65 57 14 6 65 74 6 75 6 75	140		9	9	Ξ	F	12	13	14																					
10 10 11 11 12 13 14 15 16 18 21 23 28 24 4 4 5 5 6 5 7 5 8 0 8 7 7 7 7 8 1 10 10 11 11 12 13 14 15 16 18 21 23 28 24 4 5 5 10 6 6 7 2 8 0 8 7 7 7 8 1 10 10 11 11 12 13 14 15 16 16 18 20 23 25 28 30 45 5 10 6 6 7 2 8 0 8 7 7 7 8 1 10 10 11 11 12 13 14 15 16 16 18 20 23 25 28 30 45 5 10 8 6 7 2 8 0 8 7 7 7 8 1 10 10 11 13 14 15 16 18 20 23 25 28 30 45 5 10 10 10 11 12 13 14 15 16 18 20 23 25 28 30 45 5 10 10 10 11 12 13 14 15 16 18 20 23 25 28 30 40 5 10 10 10 11 12 13 14 15 1	210		9	10	=	F	12	13	14	15																				
10 10 11 11 12 13 14 15 16 16 20 23 26 29 33 36 45 51 56 65 10 68 72 78 84 91 00 10 10 11 11 12 13 14 15 16 16 16 20 23 25 29 33 36 45 51 56 61 68 72 78 84 91 00 10 10 11 11 12 13 14 15 16 16 16 20 23 25 29 34 4 4 6 56 61 68 72 78 84 91 00 11 12 14 16 19 22 25 29 34 4 56 89 84 100 10 11 12 13 14 15 17 19 22 25 29 34 4 56 89 84 100 10 11 12 13 14 15 17 19 22 25 29 34 4 56 89 84 100 10 11 12 13 14 15 17 19 22 25 29 34 4 56 89 84 100 10 11 12 13 14 15 17 19 22 27 39 39 48 51 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 10 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 19 22 27 39 39 48 61 00 10 11 12 13 14 15 17 19 21 24 15 17 19 21 24 27 39 10 10 10 11 12 13 14 15 17 19 14 15 17 19 21 24 27 39 39 48 61 00 10 11 11 12 13 14 15 17 19 21 24 27 39 39 48 61 00 10 11 11 12 13 14 15 17 19 21 24 27 39 39 48 61 00 10 11 11 12 13 14 15 17 19 21 23 25 29 34 38 61 68 61 80 80 80 80 80 80 80 80 80 80 80 80 80	280		9	9	=	=	12	£ :	4	15																				
10 10 11 11 12 13 14 15 16 18 20 23 25 28 33 38 41 49 55 61 68 74 81 89 100 11 11 12 13 14 15 16 18 20 23 25 28 33 38 41 49 55 61 68 72 78 84 91 00 12 17 20 29 50 62 75 80 100 13 17 21 20 29 50 62 75 80 100 14 11 12 13 14 15 18 18 100 15 10 11 12 13 14 15 18 18 100 16 11 12 13 14 15 18 18 100 17 10 11 12 13 14 15 18 12 2 25 31 39 48 59 100 18 10 10 11 12 13 14 15 18 12 2 25 31 39 48 59 100 18 10 10 11 12 13 14 15	350		9	9	Ŧ,	F	12	13	14	15															97					
21 30 39 50 62 75 90 100	420		9 9	2 5	Ξ;	= ;	2 5	<u>د</u> د	7 :		£ 4														88					
21 30 39 50 62 75 90 100 13 10 12 14 19 19 10 100 14 10 12 14 19 19 22 25 29 34 45 50 100 15 11 12 14 19 19 22 25 29 34 45 50 100 16 11 12 13 15 17 19 22 25 31 39 48 54 100 17 10 11 12 13 15 17 19 22 25 31 39 48 58 70 96 100 18 10 10 11 12 13 14 15 17 19 22 25 31 39 48 58 70 96 100 19 10 10 11 12 13 14 15 17 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 17 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 17 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 12 13 14 15 16 19 22 27 31 39 48 51 100 10 10 11 11 12 13 14 15 16 19 22 27 31 30 39 48 51 100 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 48 56 36 57 68 57 68 57 68 57 69 57 67 67 67 67 67 67 67 67 67 67 67 67 67	280		2 !	2	F /	F	7	2 9	4 ;		0 9														84					
21 30 39 50 62 75 90 100 13 17 21 27 32 46 54 63 100 66 69 82 100 67 100 100 11 12 14 16 19 22 25 31 39 46 56 69 82 100 100 100 10 11 12 14 16 19 22 25 31 39 46 56 100	8		9	10	=	=	12	13	14		9														5					
13 17 21 27 32 39 46 54 63 193 100 11 13 16 19 23 27 32 37 43 57 73 100 11 13 16 19 23 27 32 37 43 57 73 100 11 11 12 14 16 19 22 25 29 34 46 56 69 80 100 11 10 11 12 13 15 17 19 22 25 29 34 46 56 69 100 11 10 11 12 13 14 15 17 18 22 25 31 39 46 51 100 11 10 11 12 13 14 15 16 19 22 25 29 34 40 53 69 170 100 12 10 11 12 13 14 15 16 19 22 25 29 34 40 53 69 170 100 13 10 10 11 12 13 14 15 16 19 22 25 29 34 40 56 69 170 100 14 10 10 11 12 13 14 15 16 18 20 22 27 33 39 46 59 71 85 100 15 10 10 11 12 13 14 15 16 18 20 23 27 30 39 48 59 100 16 10 10 11 11 12 13 14 15 16 18 20 23 27 30 39 48 59 100 17 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 55 89 100 18 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 80 67 75 83 92 100 18 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 55 81 57 85 99 100 19 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 55 81 85 85 88 74 87 89 80 87 100 19 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 87 89 80 87 77 85 93 100 15 10 10 11 11 12 13 14 15 17 18 17 18 21 23 25 29 34 38 48 85 85 85 86 74 80 85 92 89	60		21	30	39	20	62	75	90																					
11 13 16 19 23 27 32 37 43 57 73 91 100 11 12 14 16 19 22 25 25 29 34 44 56 89 84 100 10 11 12 13 16 17 19 22 25 29 34 46 56 89 84 100 10 11 12 13 16 17 19 22 25 29 34 46 58 100 10 11 12 13 16 17 18 22 25 31 39 46 59 100 10 11 12 13 14 15 17 18 22 27 33 39 46 61 100 10 11 12 13 14 15 17 18 22 27 33 39 46 61 100 10 11 12 13 14 15 16 19 22 25 27 33 39 46 61 100 10 11 12 13 14 15 16 19 22 25 29 34 46 56 89 84 100 10 10 11 12 13 14 15 16 18 21 24 28 32 41 51 81 00 10 10 11 12 13 14 15 16 18 21 24 28 32 41 51 85 100 10 10 11 12 13 14 15 17 19 21 23 25 30 35 41 47 56 87 87 83 93 100 10 10 11 12 13 14 15 17 19 21 23 25 30 35 41 47 56 80 87 75 83 93 100 10 10 11 12 13 14 15 17 19 21 23 25 30 35 41 47 85 80 87 75 83 93 100 10 10 11 12 13 14 15 17 19 21 23 25 30 35 41 47 85 80 87 75 83 93 100 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 85 80 87 75 89 89 100 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 85 80 87 75 89 89 100 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 48 85 87 88 88 89 100 10 10 11 11 12 13 14 15 17 18 21 23 25 30 35 41 48 85 87 88 88 88 70 77 86 89 89 70	16		13	17	21	27	32	36	48		63																			
10 12 14 18 19 22 25 29 34 44 56 69 84 100 10 11 12 13 15 15 17 19 22 25 28 36 46 56 9 84 100 10 11 12 13 15 15 17 18 22 25 28 31 38 46 51 00 10 11 12 13 15 17 18 22 25 27 33 39 46 61 80 100 10 10 11 12 13 14 15 17 18 22 27 33 39 46 61 80 100 10 10 11 12 13 14 15 17 18 22 27 33 39 46 61 80 100 10 10 11 12 13 14 15 18 12 2 27 33 39 46 61 80 100 10 10 11 12 13 14 15 16 19 23 27 31 36 48 61 77 84 100 10 10 11 12 13 14 15 18 20 2 2 25 29 34 46 61 80 87 100 10 10 11 12 13 14 15 18 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24		=	13	16	19	23	27	32		43																			
10 11 12 14 16 19 22 25 28 36 48 58 70 98 100 10 11 12 13 15 17 19 22 25 31 39 48 58 70 98 100 10 11 12 13 15 17 19 22 25 31 38 48 58 70 98 100 10 11 12 13 14 15 17 18 22 27 33 39 46 61 80 100 10 11 12 13 14 15 17 18 22 27 33 39 46 61 80 100 10 11 12 13 14 15 16 19 22 27 33 39 46 61 80 100 10 11 12 13 14 15 16 19 22 25 28 34 44 56 89 84 100 10 10 11 12 13 14 15 18 20 23 25 28 34 44 56 89 84 100 11 12 13 14 15 18 19 22 24 27 33 40 48 56 65 76 87 99 100 11 11 12 13 14 15 17 19 21 23 26 31 37 43 50 57 65 74 83 93 100 11 11 12 13 14 15 17 19 21 23 26 31 37 43 50 57 65 77 85 99 100 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 57 83 77 77 85 99 100 11 11 12 13 14 15 17 19 21 23 25 29 34 38 43 48 59 77 77 78 89 90 100 11 11 12 13 14 15 17 19 21 23 25 29 34 38 43 48 59 77 77 78 89 90 97 100	32		9	12	4	18	18	55	52		34						,													
10 11 12 13 15 17 19 22 25 31 39 48 50 70 50 100 10 10 11 12 13 15 17 18 21 26 31 38 46 54 74 98 100 10 10 11 12 13 14 15 11 18 22 27 33 39 46 61 100 9 10 11 12 13 14 15 18 19 22 25 29 34 40 53 69 84 100 9 10 10 11 12 13 14 15 18 19 22 25 29 34 44 56 69 84 100 9 10 10 11 12 13 14 15 18 20 23 27 30 39 48 59 71 85 100 9 10 10 11 12 13 14 15 18 20 23 27 30 39 48 59 71 85 100 9 10 10 11 12 13 14 15 17 19 22 24 27 33 40 48 56 65 76 87 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 39 35 41 47 53 89 87 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 39 35 41 47 53 89 87 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 39 35 41 47 53 89 87 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 29 34 38 43 48 53 58 63 68 74 80 85 92 98	40		10	=	12	4	16	19	22		28																			
10 10 11 12 13 15 17 18 21 26 31 38 46 61 80 100 10 10 11 12 13 14 15 17 18 22 25 33 94 6 61 80 100 10 10 11 12 13 14 15 17 18 22 25 34 40 61 80 100 9 10 10 11 12 13 14 15 16 19 22 25 29 34 44 56 69 84 100 9 10 10 11 12 13 14 15 16 18 20 23 27 30 39 48 59 100 9 10 10 11 12 13 14 15 17 19 22 24 27 33 40 48 56 15 76 87 89 100 9 10 10 11 12 13 14 15 17 19 22 24 27 33 40 48 56 15 76 87 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 44 56 65 76 87 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 44 56 51 63 77 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 44 56 51 63 77 85 99 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 44 56 51 63 77 75 89 90 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 39 34 38 48 54 69 65 77 75 89 90 90 90 90 90 90 90 90 90 90 90 90 90	48		10	F	12	13	15	17	19		52																			
10 10 11 12 13 14 15 17 18 2.2 27 33 40 10 10 10 10 10 10 10 10 11 12 13 14 15 17 21 25 29 34 40 59 10 10 10 10 11 12 13 14 15 16 19 22 25 29 34 44 56 69 84 100 10 11 12 13 14 15 16 19 22 25 29 34 44 56 69 84 100 10 11 12 13 14 15 18 20 23 27 30 39 48 59 77 92 100 10 11 12 13 14 15 17 19 21 24 27 33 40 48 56 65 76 87 89 100 10 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 60 67 75 83 93 100 10 11 11 12 13 14 15 17 19 21 23 25 30 34 44 56 51 63 77 83 100 10 11 11 12 13 14 15 17 19 21 23 25 30 34 44 55 17 83 89 100 10 10 11 11 12 13 14 15 17 19 21 23 25 39 34 38 43 65 65 65 65 76 87 77 85 99 100 10 10 11 11 12 13 14 15 17 19 21 23 25 29 34 38 43 65 85 65 65 77 77 85 99 90 100 10 10 11 11 12 13 14 15 17 19 21 23 25 29 34 38 43 65 85 65 65 77 77 78 69 92 98	64		9	9	= :	15	13	13	17		21								2 5											
9 10 11 12 13 14 15 16 19 23 27 31 36 48 61 77 94 100 9 10 10 11 12 13 14 15 16 19 22 25 29 34 44 56 69 84 100 9 10 10 11 12 13 14 15 18 20 23 27 30 39 48 59 77 92 100 9 10 10 11 12 13 14 15 17 19 22 24 27 33 40 48 56 65 76 87 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 60 87 75 83 92 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 51 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 39 34 38 48 53 68 74 80 85 92 98	80		0 0	P (= ;	77	5	4 6	£ ;		2 5																*			
9 10 10 11 12 13 14 15 16 18 22 25 29 34 44 56 69 84 100 9 10 10 11 12 13 14 15 16 18 22 25 29 34 44 56 69 84 100 9 10 10 11 12 13 14 15 17 19 22 24 27 33 40 48 56 65 76 87 89 100 9 10 10 11 11 12 13 14 15 17 19 21 23 26 31 37 43 50 57 63 74 83 93 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 44 45 51 63 70 77 85 92 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 39 34 44 48 54 59 65 75 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 29 34 38 43 48 53 58 63 68 74 80 85 92 98	96		D C	2 5	= \$	= ;	2 5	5 5	1 1		- 4																			
9 10 10 11 12 13 14 15 16 18 21 24 28 32 41 51 63 77 92 100 9 10 10 11 12 12 13 14 15 18 20 23 27 30 39 48 59 71 85 100 9 10 10 11 11 12 13 14 15 17 19 22 24 27 33 40 48 56 65 76 87 99 100 9 10 10 11 11 12 13 14 15 17 19 21 23 26 31 37 43 50 57 63 70 83 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 57 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 29 34 38 44 48 53 58 63 68 74 80 85 92 98	112		0 0	2 5	2 5	: ;	1 5	5 5	1 4		9																			
9 10 10 11 12 12 13 14 15 18 20 23 27 30 39 48 59 71 85 100 9 10 10 11 11 12 13 14 15 17 19 22 24 27 33 40 48 56 65 76 87 99 100 9 10 10 11 11 12 13 14 15 17 19 21 23 26 31 37 43 50 57 65 74 83 93 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 57 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 18 21 23 25 29 34 38 44 48 53 58 63 68 74 80 85 92 98	971		, a	2 5	2 5	÷	1 5	13	13		18																			
9 10 10 11 11 12 13 14 15 17 19 22 24 27 33 40 48 56 65 76 87 99 100 9 10 10 11 11 12 13 14 15 17 19 21 23 26 31 37 43 50 57 65 74 83 93 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 60 67 75 83 92 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 57 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 18 21 23 25 29 34 39 44 8 53 58 63 68 74 80 85 92 98	44		σ.	÷	5	:	1 2	5	13	4	15											,								
9 10 10 11 11 12 13 14 15 17 19 21 23 26 31 37 43 50 57 65 74 83 93 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 80 67 75 83 92 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 57 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 18 21 23 25 29 34 39 44 49 54 59 65 71 77 84 90 97 100 9 10 10 11 11 12 13 14 15 16 18 70 23 25 29 34 38 43 48 53 58 63 68 74 80 85 92 98	091		o a	2 5	2 5	:	: :	12	13	4	15																			
9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 35 41 47 53 80 87 75 83 92 100 9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 57 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 18 21 23 25 29 34 39 44 49 54 59 65 71 77 84 90 87 100 9 10 10 11 11 12 13 14 15 16 18 20 23 25 29 34 38 43 48 53 58 63 68 74 80 85 92 98	740		. 0	5	5	: ;	:	12	. 65	4	15														8					
9 10 10 11 11 12 13 14 15 17 19 21 23 25 30 34 40 45 51 57 63 70 77 85 93 100 9 10 10 11 11 12 13 14 15 17 18 21 23 25 29 34 49 54 49 54 59 65 71 77 84 90 97 100 9 10 10 11 11 12 13 14 15 16 18 20 23 25 29 34 38 43 48 53 58 63 68 74 80 85 92 98	250		0.	5	10	F	=	12	13	4	15														92					
9 10 10 11 11 12 13 14 15 17 18 21 23 25 29 34 39 44 49 54 59 65 71 77 84 90 97 100 10 10 10 11 11 12 13 14 15 16 18 20 23 25 29 34 38 43 48 53 58 63 68 74 80 85 92 98	2 6		0	10	9	=	F	12	13	14	15														85		8			
0 10 10 11 11 12 12 14 15 16 18 20 23 25 29 34 38 43 48 53 58 63 68 74 80 85 92 98	004		0	10	9	Ξ	=	12	13	14	15														11		06	87	8	
	040		0 (2 5	5	: :	: ;	; ;			1,														74		85	92	88	8

Table E.6: Existing Separation Tables for FHC 1 & 2

Boundary Distance	Radiation Distance Separation Distance = S m (Radiation + Projection) Boundary Distance = 0.5S m	. + 3.	0.75	7 7	2.5	n εν τ.	3.5	4 4 (1	2.25	2.5	, n	3.5	8 9 4.5	5 5 5	7 6	4 4 ~	9 9 B	8 8 6	2 2 2	2 2 2	12 1	26 28	3 4	32	34 7-	38 8	38 38
-	-	83	8																		å						
1 2	2	45	22	8																							
e .	m 4	35	2 28	87	8 8																						
r 40	r vo	8	2 5	2	94	100																					
9	•	34	<u>د</u> ي	67	88 8	8 8																					
 8 P	8 2	34	84 84	8 8	8 8	97	8																				
1 12	12	34	48	63	79	95	8																				
1 14	14	34	48	62	78	94	8 8																				
	6 85	34 34	84 84 84 84	62 62	: 1:	83	<u> </u>																				
- 2	50	34	48	62	11	92	8																				
1 30	30	34	47	62	11	85	8																				
40	40	34	4 !	3 3	F F	5 2	8 8																				
2 6	R &	4 8	£ £	2 6	12	5 5	8																				
6 6	6 G	34	4	62 62	78	9 9	8																				
100	001	34	4	62	76	16	901																				
2 1	2	42	72	8 8	1	ş																					
	4 (27	3 5	63	68	3 5	5																				
	no «	2 2	5 6	5 4	22	2	6 6	8																			
	0 0	2	8	88	S	83	62	87	9																		
	12	23	28	37	47	88	72	87	9																		
	16	7	28	32	44	53	94	78	88																		
	20	7	27	34	45	5	8	2	82		9																
2 12	24	7	27	34	42	S	28	67	77		8																
	28	7	27	34	4	4	25	99	75		8																
	32	51	27	34	4	8	28	92	23			900															
	36	51	27	8 3	5 :	84 6	8 8	64	7 7			3 5															
5 5	0 6	5 5	7 20	3 2	- 5	9 4	8 4	3 6	. 02	8 8	93	8 8															
	8 8		27	3 2	9	48	32	6	69			8															
	100	. 5	27	8 8	9	4	22	62	69			100															
	120	12	27	34	4	47	55	62	69			100															
2 88	160	5	27	34	40	47	22	62	69			8															
	CCC	5	7	24	,		-	000	**																		

Table E.6: Existing Separation Tables for FHC 1 & 2 (cont'd)

Figure Distance Single Figure Fig														l										l				l
Physical Color 1 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		§		t; t	~ ~	2.5	en en	6. 6.	4 4	č. 4.	2 2									20 00	22	24	26	28	30	32	34	E
3 57 58 87 100 89 100 100 100 100 100 100 100 100 100 10	0	= 0.55 m	0.5	0.75	-	1.25	1.5	1.75	2	100.0	2.5								O	10	Ξ	12	13	4	15	9	17	6
Andread unprotected area % Andread unprotected unprotecte	stangle Size													Ì		å	200	SEPAN	NOITA	TABLE	SUSING	MIRR	SR IMAG	E CON	CEPT			
1 3 2 2 6 8 7 100 100 100 100 100 100 100 100 100 1							Permitt	ed unpr	otected							2	RACINO	T SELA		700								
1 3 37 58 67 100 99 <t< td=""><td>} E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>d</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	} E															d												
1 3 3 37 58 8 77 100 89 100 100 100 100 100 100 100 100 100 10					3	3																						
4 10 </td <td>- 0</td> <td></td> <td>37</td> <td>28</td> <td>87</td> <td>8 8</td> <td>77</td> <td>8</td> <td></td>	- 0		37	28	87	8 8	77	8																				
1	C4 @		200	27	36	8 8	63	8	66	8																		
6 15 16 23 28 45 56 68 61 68 61 69 100 10 30 18 22 28 24 25 50 66 66 61 10 10 30 18 22 28 24 25 50 56 67 68 100 14 28 18 21 25 30 35 40 45 51 66 69 69 69 100 16 21 25 30 35 40 45 51 66 69 69 69 69 69 100 20 30 34 38 44 50 56 69 <td>0 4</td> <td></td> <td>19</td> <td>24</td> <td>3 5</td> <td>6</td> <td>5</td> <td>84</td> <td>79</td> <td>98</td> <td></td>	0 4		19	24	3 5	6	5	84	79	98																		
1	2		19	23	23	38	45	28	89	18		00																
8 24 18 22 28 32 38 45 53 61 71 39 100 10 30 18 21 25 30 35 41 47 53 60 76 94 100	80		18	22	28	34	42	20	9	72																		
10 30 18 22 28 31 38 41 41 51 50 61 61 61 61 61 61 61 6	80		18	22	58	32	38	45	53	19			3 8															
12 38 18 21 25 30 35 4 1 47 55 6 6 6 14 100 100 100 100 100 100 100 100 100	6		18	55	58	3	8 8	45	64	8 6				8														
14 42 18 21 25 30 35 34 45 50 66 67 100 100 100 100 100 100 100 100 100 10	12		18	77	52	30	3	4	74	2 .				3 8														
15	4 6		80 0	5 5	2 %	3 8	2 2	5 %	45	20					8													
20 60 18 21 25 29 34 39 44 49 54 69 79 93 100 20 60 150 16 21 25 29 34 38 43 48 63 72 82 94 100 50 150 16 21 25 29 34 38 43 48 63 72 82 94 100 60 150 16 21 25 29 34 38 43 48 52 62 72 82 91 100 100 160 21 25 29 34 38 43 47 52 62 72 82 91 100 100 300 44 48 53 64 48 52 62 72 82 91 100 100 310 31 34 47	9 9		0 4	3 6	3 5	28 28	3	3 6	4	28					8													
30 90 18 21 25 29 34 38 43 48 53 63 74 86 97 100 40 120 180 18 21 25 29 34 38 43 48 53 63 73 83 100 60 180 18 21 25 29 34 38 43 46 52 62 72 82 91 100 80 240 18 21 25 29 34 38 43 46 52 62 72 82 91 100 100 300 18 21 25 29 34 38 47 52 62 72 82 91 100 100 300 48 48 48 52 62 72 82 91 100 100 300 48 48 48	2 0		6 60	2 5	22	58	34	39	44	49																		
40 120 18 21 25 29 34 38 43 48 53 63 73 83 94 100 50 150 160 160 16 21 25 29 34 38 43 46 52 62 72 82 100 100 300 160 17 25 29 34 38 43 47 52 62 72 82 100 2 4 18 21 25 29 34 38 43 47 52 62 72 82 100 3 12 24 31 40 51 64 78 88 100 82 72 81 100 5 20 31 40 51 64 78 88 100 80 100 6 24 17 10 22 28 34 <td< td=""><td>2 8</td><td></td><td>18</td><td>21</td><td>25</td><td>59</td><td>8</td><td>38</td><td>43</td><td>48</td><td></td><td></td><td></td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2 8		18	21	25	59	8	38	43	48						8												
50 150 18 21 25 29 34 38 43 48 52 62 72 82 93 100 80 180 190 18 21 25 29 34 38 43 47 52 62 72 82 93 100 100 300 18 21 25 29 34 38 43 47 52 62 72 82 92 100 2 8 21 25 29 34 38 47 52 62 72 81 100 3 12 16 27 29 10 98 100	9		18	21	25	53	34	38	43	48						8 8												
60 180 18 21 25 29 34 38 43 46 52 52 52 53 53 43 47 52 62 72 82 93 100 100 300 18 21 25 29 34 38 43 47 52 62 72 82 93 100 2 8 100 18 21 25 29 34 47 52 62 72 82 91 100 3 12 19 24 100<	S		18	51	25	59	34	38	43	48						3 8												
80 240 18 21 25 29 34 36 43 47 52 62 72 87 100 1 4 35 53 76 100	8		18	23	25	29	34	38	5.5	48						00												
10 300 18 21 25 29 34 35 45 47 20 1 100 2 8 4 22 31 42 55 72 91 100 4 10 18 22 31 42 55 72 91 100 5 20 11 24 10 10 10 10 10 10 10 10 10 10 10 10 10	8		18	21	52	67	4 9	2 6	5 5	1						8												
1 4 35 53 76 100 2 8 22 31 42 55 72 91 100 3 12 19 24 31 40 51 64 75 100 4 16 22 34 42 52 69 100 6 24 16 22 26 31 36 47 51 100 10 40 17 20 24 28 34 40 48 56 64 87 100 10 40 17 19 22 26 31 38 42 48 55 72 91 100 10 40 17 19 22 26 31 38 44 50 87 100 11 48 17 19 21 25 28 32 34 44 50 87	100		18	21	25	29	34	38	43	/4						3												
1 4 25 33 76 100 2 8 12 31 42 55 64 75 100 4 16 22 27 34 42 52 63 75 89 100 5 20 17 20 24 28 34 40 48 56 88 71 100 10 40 17 20 24 28 34 40 48 56 89 100 10 40 17 19 22 28 34 40 48 56 89 100 10 40 17 19 22 28 34 44 50 89 100 11 48 17 19 21 25 28 32 36 44 50 89 100 14 56 17 19 21 24 27				5		\$																						
2 8 22 31 42 35 42 31 10 <td></td> <td></td> <td>32</td> <td>50</td> <td></td> <td>3</td> <td>1,2</td> <td>č</td> <td>8</td> <td></td>			32	50		3	1,2	č	8																			
3 12 18 22 27 34 22 23 34 24 55 63 75 89 100 6 24 10 17 20 24 28 34 40 48 56 68 87 100 10 40 17 20 24 28 34 40 48 56 68 87 100 10 40 17 19 22 28 34 40 48 56 68 87 100 10 40 17 19 22 28 34 42 48 55 70 97 100 11 40 17 19 21 25 28 32 34 44 50 68 100 14 56 64 47 56 67 89 40 47 56 67 89 100 16 <td></td> <td></td> <td>5 5</td> <td>5 6</td> <td></td> <td>00 0</td> <td>2 5</td> <td>8 6</td> <td>3 6</td> <td>98</td> <td>100</td> <td></td>			5 5	5 6		00 0	2 5	8 6	3 6	98	100																	
5 20 18 21 25 30 37 45 53 64 75 100 6 24 10 40 46 56 64 87 100 10 40 10 40 46 56 64 87 100 10 40 17 19 22 28 34 40 46 56 64 87 100 10 40 17 19 22 28 34 48 55 72 87 100 14 48 17 19 22 28 32 37 42 47 58 72 87 100 14 56 17 19 21 24 27 39 43 52 62 77 87 100 16 21 24 27 31 34 36 43 56 62 77 87 <td></td> <td></td> <td>D 0</td> <td>32</td> <td></td> <td>34</td> <td>42</td> <td>52</td> <td>63</td> <td>75</td> <td>89</td> <td>100</td> <td></td>			D 0	32		34	42	52	63	75	89	100																
6 24 17 20 24 28 34 40 46 56 68 87 100 8 32 17 19 22 26 31 36 42 48 55 72 91 100 10 40 17 19 22 25 29 34 36 47 56 72 91 100 14 56 17 19 21 25 28 32 36 40 45 56 67 87 100 16 44 17 19 21 24 28 33 44 50 65 67 80 95 100 18 72 17 19 21 24 27 31 36 43 44 50 66 70 80 100 18 43 41 45 46 45 56 67 67 <td></td> <td></td> <td>0 60</td> <td>2 12</td> <td></td> <td>30</td> <td>37</td> <td>45</td> <td>53</td> <td>64</td> <td>75</td> <td></td>			0 60	2 12		30	37	45	53	64	75																	
8 32 17 19 22 26 31 36 42 48 55 72 91 100 10 40 40 40 45 72 91 100 12 48 17 19 22 25 29 34 36 47 56 73 97 100 14 56 17 19 21 25 28 32 34 45 56 67 89 100 16 64 17 19 21 24 27 39 43 52 62 73 89 100 20 80 17 19 21 24 27 31 34 38 42 51 60 70 82 94 100 20 150 17 19 21 24 27 30 34 37 41 48 55 65 71<			17	2		28	34	40	48	99	88																	
10 40 17 19 22 25 29 34 38 44 50 63 79 97 100 112 48 17 19 22 25 29 34 38 44 50 63 79 97 100 112 48 17 19 22 25 28 32 37 42 47 58 72 87 100 114 56 17 19 21 24 28 31 35 39 43 55 67 80 89 100 17 19 21 24 27 31 35 39 43 52 62 73 65 89 100 100 100 100 117 19 21 24 27 31 34 38 42 51 60 70 82 94 100 100 100 117 19 21 24 27 30 34 37 41 48 56 83 71 80 97 60 240 117 19 21 24 27 30 34 37 41 48 55 62 69 77 89 95 100 100 100 100 100 100 100 100 100 10	, eo		17	19		28	31	38	42	48	22																	
12 48 17 19 22 25 28 32 37 42 47 58 72 87 100 14 56 17 19 21 25 28 32 36 40 45 55 67 80 95 100 16 64 17 19 21 24 28 31 35 39 43 52 67 80 95 100 16 72 17 19 21 24 27 31 35 39 43 52 62 73 65 70 20 80 17 19 21 24 27 31 34 38 42 51 60 70 82 84 100 30 120 17 19 21 24 27 30 34 37 41 49 57 65 74 83 100 40 160 240 17 19 21 24 27 30 34 37 41 48 55 62 69 77 78 95 60 240 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92 60 320 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92	9		17	19		25	82	34	38	44	22				8 8													
14 56 17 19 21 25 28 32 36 40 45 35 97 97 99 99 100 16 64 17 19 21 24 27 31 35 39 43 52 62 73 66 99 100 20 80 17 19 21 24 27 31 34 36 47 67 67 82 94 100 30 120 17 19 21 24 27 30 34 37 41 49 57 65 74 83 100 40 160 17 19 21 24 27 30 34 37 41 48 55 62 70 78 95 50 200 17 19 21 24 27 30 34 37 40 48 5	12		17	19		25	28	32	37	45	47					8												
16 64 17 19 21 24 26 31 35 39 43 52 62 73 65 98 100 10 10 10 10 10 10 10 10 10 10 10 10	4		17	19		52	28	32	36	0 6	5 5					8 8												
18 72 17 19 21 24 21 31 35 35 45 12 12 12 12 12 12 12 12 12 12 12 12 12	18		17	19		24	28	5	200	200	1 5						8											
20 80 17 19 21 24 27 31 34 35 42 15 17 19 20 17 19 21 24 27 30 34 37 41 48 56 63 70 78 95 95 95 95 95 95 95 95 95 95 95 95 95	18		17	6		24	27	5 6	6 5	200	2 5						8 8											
30 120 17 19 21 24 27 30 34 37 41 48 56 63 71 80 97 40 48 56 63 70 78 95 60 240 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92 80 320 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92 80 320 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92 80 320 17 19 21 24 27 30 34 37 40 47 55 62 69 77 92	29		17	5 9		47	7 6	2 6	5 6	2 6	44						8											
40 160 17 19 21 24 27 30 34 37 41 48 55 63 70 78 95 60 240 17 19 21 24 27 30 34 37 40 48 55 62 70 78 93 80 320 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92 80 320 17 19 21 24 27 30 34 37 40 47 55 62 69 77 92 40 40 40 40 40 40 40 40 40 40 40 40 40	30		17	5		4 6	77	8 8	5 6	3 6								20										
50 200 17 19 21 24 27 30 34 37 40 48 55 62 70 78 93 60 240 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92 60 320 17 19 21 24 27 30 34 37 40 47 55 62 69 77 92 60 77 92	9 9		, ,	2 4		4 6	27	9 6	34	37	. 4							2										
80 320 17 19 21 24 27 30 34 37 40 48 55 62 69 77 92 100 100 100 100 100 100 100 100 100 10	2 8			0 0		24	27	30	34	37	4							2										
20 320 17 19 21 24 27 30 34 37 40 47 55 62 69 77 92	2 6		- +	0 0		20	27	30	34	37	40							8										
7 6	8 8		- !				i											1										

Table E.6: Existing Separation Tables for FHC 1 8 2 (cont'd)

Particular Properties 1 1 2 2 2 3 3 4 4 5 5 4 4 5 5 4 4	Fire Haza	Fire Hazard Category		된	u	182				Emissivity	sivity										Flame Projection Distance	Lieber	1	auce			_			0	Ε	
The control of the co	Firecell Te	mperature		F	н	831.	ى 9			Limit	ng Radi ed Radi	ation				12.6	3 kW/m	5 5														
4 4 4 4 5 6 7 1 12 12 12 12 12 12 12 12 12 12 12 12 1	Radiation Separatio	Distance n Distance + Projection			5.1		2.5		8. 8. 8. 8.			S C	6 0 60	~ ~	ω ω	8 6	t 0	12	1 4 4	16	18	20	22	24	26 28	28	30	32	34	38	38 88	04 04
South Dark SEPARATION TABLES USING MIRROR MADE CONCEPT.	Boundary	Distance	=0.5S m	0.5	0.75		1.25				2.25		က	3.5	4	4.5	S	φ	7	80	O.	9	£	12	5	4	15	9		18	19	20
W As	Rectangle	Size					ř																									
1 5 3 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 5 5								Per	itted un	protecte		æ						BOUN	DARY	EPARA	TION	ABLES	USING	MIRRO	R IMAG	ECONC	EPT					
1 5 34 1 1																																
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	5		34																												
1	so so	2 2 5		2 9																												
1	. v. v			2 2 2	* 61 * 94.		·																									
1	. w. c			9691																												
14 70 16 16 17 16 18 18 18 18 18 18 18 18 18 18 18 18 18				გ წ																												
1 6 90 16 16 17 18 18 100 1 19 10 10 10 10 10 10 10 10 10 10 10 10 10				5 ;																												
18 90 146 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				6 6			,,																									
90 150 150 160 160 170 170 170 170 170 170 170 170 170 17				6 4																												
90 200 116 91 200 116 92 200 116 93 12																																
90 300 16 9 10 1 1				6 6																												
100 500 16 : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				16			• • •																									
1 6 34 50 67 88 100 2 12 22 28 37 47 68 72 87 100 4 2 4 12 2 12 2 28 37 47 68 72 87 100 4 2 4 17 20 24 28 34 40 48 66 68 87 100 6 00 11 7 19 22 24 28 31 84 0 10 10 60 11 8 10 22 24 28 31 86 10 11 60 11 7 19 22 24 28 31 80 10 11 60 11 7 19 22 24 28 31 80 10 11 60 11 7 19 20 22 24 28 31 80 10 11 60 11 7 18 20 22 24 28 31 30 40 51 60 10 11 10 80 11 7 18 20 22 24 28 31 30 40 51 60 10 11 10 80 11 7 18 20 22 24 28 31 30 40 51 60 10 11 10 80 11 7 18 20 22 24 28 28 31 30 44 48 51 67 10 12 12 12 12 12 12 12 12 12 12 12 12 12 1				6 6																									d No-			
1 6 34 50 67 88 100 2 12 22 28 37 47 58 70 70 4 24 16 18 100 72 88 100 72 89 100 5 30 17 19 22 28 34 40 48 56 68 87 100 6 30 17 19 22 26 29 34 40 48 56 68 87 100 10 60 17 19 22 26 29 34 45 56 68 100 7 10 60 17 18 20 22 24 45 56 68 100 7 14 84 16 17 18 20 22 24 25 29 39 100 16 17 18																																-
4 24 25 34 40 100 4 24 15 26 34 100 4 24 17 20 24 26 36 84 100 5 30 17 20 24 28 34 40 48 56 89 100 8 36 68 87 100 30 30 40 48 66 87 100 10 80 16 17 19 22 25 29 45 66 80 100 10 60 16 17 19 22 26 29 30 45 66 80 100 10 60 17 19 22 24 26 29 30 46 60 77 80 100 10 10 10 10 22 24 26 29 30 40	60 6	9 5		34	8 8	67	88	5 5	ş		Ş																					
4 24 17 20 24 28 34 40 48 56 68 87 100 5 30 17 19 22 25 30 41 47 55 72 93 100 8 48 16 17 19 22 24 28 31 36 68 81 96 100 10 60 16 17 19 21 23 26 29 32 86 88 81 96 100 12 72 16 17 19 21 23 29 42 56 88 81 96 100 12 72 16 17 18 20 22 24 28 31 34 45 56 84 100 18 10 10 10 51 60 52 84 50 89 100 <tr< td=""><td>ာ ဖ</td><td></td><td></td><td>18</td><td>2 6</td><td>28</td><td>34</td><td>42</td><td>2 9</td><td>60</td><td>3 2</td><td>84</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	ာ ဖ			18	2 6	28	34	42	2 9	60	3 2	84	100																			
5 30 17 19 22 25 30 35 41 47 55 72 93 100 8 38 16 18 20 23 27 31 36 42 48 63 80 99 100 10 60 16 17 19 21 23 26 29 33 36 45 56 88 100 12 72 16 17 18 20 22 25 28 31 34 42 50 60 72 84 100 14 84 16 17 18 20 22 24 27 30 33 36 47 56 66 77 100 16 17 18 20 22 24 26 28 31 36 47 56 66 77 100 10 10 10 <td>60</td> <td></td> <td></td> <td>11</td> <td>8</td> <td>24</td> <td>28</td> <td>34</td> <td>4</td> <td>48</td> <td>28</td> <td>8</td> <td>87</td> <td>8</td> <td></td>	60			11	8	24	28	34	4	48	28	8	87	8																		
8 16 17 18 25 24 28 31 34 42 48 61 100 10 60 16 17 18 21 23 26 28 31 34 42 50 60 72 84 100 12 72 24 28 29 32 36 45 56 69 77 100 14 84 16 17 18 20 22 24 26 28 31 34 42 50 60 77 100 16 96 17 18 20 22 24 26 28 31 38 45 53 61 77 100 10 10 17 18 20 22 24 26 28 31 38 45 53 61 77 100 10 10 10 10 10 </td <td>တ ဖ</td> <td></td> <td></td> <td></td> <td>9</td> <td>2 2</td> <td>52</td> <td>8 8</td> <td>33</td> <td>4 8</td> <td>47</td> <td>SS 5</td> <td>2 2</td> <td>6 8</td> <td>8</td> <td></td>	တ ဖ				9	2 2	52	8 8	33	4 8	47	SS 5	2 2	6 8	8																	
10 60 16 17 19 21 23 26 29 32 36 45 56 68 61 00 12 72 16 17 18 20 22 24 26 29 31 34 42 50 60 72 64 100 14 84 16 17 18 20 22 24 26 29 31 34 42 50 60 72 64 100 15 100 16 17 18 20 22 24 26 29 31 37 43 50 58 61 77 100 20 120 16 17 18 20 22 24 26 28 31 36 42 49 56 64 82 100 20 120 16 17 18 20 21 23 25 27 29 34 40 45 51 67 70 86 100 20 300 16 17 18 20 21 23 25 27 29 34 40 45 51 67 70 86 100 20 300 16 17 18 20 21 23 25 27 29 34 40 45 51 67 70 86 100 20 300 16 17 18 20 21 23 25 27 29 34 40 45 51 67 70 86 100 20 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 88 100 20 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 89 100 20 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 89 100 20 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 74 89 100 20 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 83 94 100					1 2	5 6	3 2	24.	58	3 5	36	8 4	5 t	8 8	28 28 28	8 8 8	8															
14 84 16 17 18 20 22 24 27 30 33 47 56 66 77 100 16 96 16 17 18 20 22 24 26 23 31 37 43 50 58 67 71 100 20 120 16 17 18 20 22 24 26 28 31 37 43 50 58 67 87 100 20 120 16 17 18 20 22 24 26 28 31 36 42 49 56 84 82 100 30 180 16 17 18 20 21 23 25 27 39 34 40 45 51 67 70 86 100 50 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 88 100 60 380 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 88 100 60 400 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 88 100 60 380 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 88 100 60 80 10 10 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 83 94 100 60 80 10 10 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 83 94 100	5" - " "			9 9	1 1	6 4	2 2	8 8	3 38	8 8	33	8 3	£ 5	83	88	20 1	96	8														
16 96 16 17 18 20 22 24 26 29 32 38 45 53 61 71 93 100 20 120 16 17 18 20 22 24 26 28 31 37 43 50 58 67 87 100 30 180 16 17 18 20 22 24 26 28 31 36 40 45 51 67 100 40 240 16 17 18 20 21 23 25 27 29 34 46 45 54 66 79 93 100 50 300 16 17 18 20 21 23 25 27 29 34 48 53 64 76 89 100 60 360 16 17 18 20 <t< td=""><td>À</td><td></td><td></td><td>9 9</td><td>- 1</td><td>5 6</td><td>2 8</td><td>2 2</td><td>2 2</td><td>27</td><td>5 S</td><td>¥ &</td><td>3 42</td><td>8 4</td><td>28 88 28 38</td><td>2 99</td><td>7 24</td><td>8 8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	À			9 9	- 1	5 6	2 8	2 2	2 2	27	5 S	¥ &	3 42	8 4	28 88 28 38	2 99	7 24	8 8														
18 108 16 17 18 20 22 24 26 28 31 37 43 50 58 67 87 100 20 120 16 17 18 20 22 24 26 28 31 36 42 49 56 64 82 100 30 180 16 17 18 20 21 23 25 27 30 34 40 45 51 67 70 86 100 40 240 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 88 100 100 60 380 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 89 100 100 800 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 74 86 97 100 100 800 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 83 94 100				19	11	18	20	22	24	28	58	32	38	45	23			83	8													
20 120 10 17 18 20 21 23 25 27 39 34 40 45 51 57 70 86 100 30 160 16 17 18 20 21 23 25 27 29 34 39 44 49 54 66 79 93 100 100 50 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 88 100 100 60 360 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 89 100 100 600 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 74 89 97 100 100 600 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 89 94 100				9 9	2 !	₽ ;	88	8 8	24	8 8	28	3	37	£ ;	20	8 8 8	29	87														
40 240 16 17 18 20 21 23 25 27 29 34 49 44 49 54 66 79 93 100 50 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 100 100 60 360 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 100 80 480 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 89 40 100 600 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 72 82 <				0 4	- :	0 4	3 8	3 5	\$ 5	8 8	3 8	5 6	8 3	2 4 2	49	8 2	49	82			100											
50 300 16 17 18 20 21 23 25 27 29 34 38 43 48 53 64 76 68 100 100 100 100 100 100 100 100 100 10				. 6	1	5 6	8 8	7 7	3 8	2 2	7 2	3 8	34 8	2 gg	0 4	ر 49) o 24	2 8				ξ										
60 360 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 74 86 97 100 80 480 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 83 94 100 100 600 16 17 18 20 21 23 25 27 29 34 38 43 48 52 62 72 82 93 100				16	17	18	20	21	83	52	27	8	34	38	6	48	53	64				8										
80 480 16 17 18 20 21 23 25 27 29 34 38 43 48 53 63 73 83 94 100 600 16 17 18 20 21 23 25 27 29 34 38 43 48 52 62 72 82 93				16	11	18	20	21	23	52	27	23	34	38	43	48	53	63				9										
10 10 10 10 10 10 10 10 10 10 10 10 10 1				9 9	7 ;	£ 5	2 8	7 7	3 3	32	27	8 8	33	88	£ 4	48	23	63				8										
		~		2	2	0	3	7	S	6	7	₹	34	88	54	8	25	62				9								r	,	

Table E.6: Existing Separation Tables for FHC 1 & 2 (cont'd)

The service of Parity Production and Parity	The control of the co	Fire Hazard Category	FHC		182		-	ω Ξ	missivity miting R	adiation		11 12	12	1 6 kW/m	۸2			Flam	Flame Projection Distance	ion Dist	ance			L	ı)	Ē
9-m 1 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6-m 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	recell Temperature		-	831.6 C			Ü	nitted R	diation		"	.84	0 kW/m	42											Ì		
Physical Conference of the con	Particle	S		5 5	2 2	2.5		3.5		ر د د			თთ	5 5	5 5	4 4	91	8 8	2 8	2 2	24	26	28	3 30	32	34		38
7 24 49 68 55 100 100 100 100 100 100 100 100 100	7 2 24 26 26 26 26 27 23 28 28 28 29 28 100 20 20 20 20 20 20 20 20 20 20 20 20 2	diation + Projection) Indary Distance =0.5S m	9	0.75		1.25	2	.75		25			4.5	r.	89	7	œ	a	5	5	12	13	4	15	16	17		19
W Ae 1 7 34 49 66 100 96 100 96 100 96 100 96 100 96 100	7 1 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	tangle Size				۵	primited	toradi	age beto	<i>≱</i> €					BOUN	IDARY	SEPAR	ATION	TABLES	ONISO	MIRRO	I IMAG	ECON	CEPT				
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	≥								2																		
1	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ε																1						1			-	
1	2 11 22 23 23 23 24 21 10 25 14 25 14 25 14 23 24 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10<		34	49	98		8																					
4 3 1 2 2 2 1 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 3 4 3 4 4 4 3 4 3 4 3 4 3	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		21	28	38																							
1	1		8 1	22	27																							
1		4 u	/ ·	2 4	3 5																							
1	0 50 10 10 10 10 10 10	n ec	- (2 60	2 8																							
1. 1	1. 6	> σο	5 8	2 =	19									9	5													
1.2 8.4 16. 16. 17 18 19 22 22 24 27 29 24 45 53 61 00 100 100 100 100 100 100 100 100 1	1. 2 64 16 16 17 18 10 12 12 12 12 12 12 12 12 12 12 12 12 12		16	17	80									84	100													
14 98 9 19 10 10 10 10 10 10 10 10 10 10 10 10 10	14 18 19 19 19 12 12 2 2 2 2 2 2 2	12	16	17	18									74	88	8												
18 172 18 18 19 18 17 18 20 22 24 28 28 34 40 46 54 87 19 100 100 100 100 100 100 100 100 100	1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2	14	18	18	18									67	88	8												
1	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		18	16	11									62	æ ;	9 2	3											
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 140 161 181 171 18 20 21 23 24 20 21 23 24 20 21 22 21 23 24 20 11 28 100 100 50 20 21 21 23 25 20 30 34 36 47 68 80 91 90 100 1		19	9	1									58	2 ;	60	3 5											
10. 280. 181 18	10 2 20 1 16 1 16 1 17 18 20 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		9 9	9 9	: :									00 4	- 6	74	3 8	ξ	5									
90 350 16 17 18 20 21 23 24 26 24 76 65 76 65 76 87 99 100 90 420 420 42 42 36 34 34 46 65 76 87 99 100 100 700 16 17 16 20 21 23 24 26 30 34 46 65 76 87 99 100 1 8 34 48 65 82 100 21 23 24 26 30 34 41 46 66 76 89 100 1 1 16 16 17 18 20 21 23 24 26 30 34 42 46 56 75 91 40 46 56 76 91 70 91 70 91 9	90 360 16 16 17 18 20 21 23 28 28 90 34 38 42 47 66 57 78 87 89 100 100 100 100 100 100 100 100 100 10		D 4	0 4	- :									54	57	88	8 8	83	5 5									
420 16 16 17 18 20 21 23 24 26 34 48 65 64 74 84 95 100 560 16 16 16 17 18 20 21 23 24 26 34 38 42 46 54 64 74 86 90 100 16 16 17 18 20 21 23 24 26 34 36 46 54 66 71 46 66 71 80 89 100 34 48 56 72 41 46 56 71 46 56 71 80 89 100 46 46 56 71 46 56 71 80 89 100 46 46 56 71 46 56 71 80 89 100 46 16 17 18 <t< td=""><td> Fig. Fig. </td><td></td><td>2 9</td><td>6</td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>47</td><td>28</td><td>65</td><td>78</td><td>87</td><td>66</td><td>\$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Fig.		2 9	6	17									47	28	65	78	87	66	\$								
80 560 16 16 17 18 20 21 23 24 26 34 35 41 46 54 63 72 81 91 100 1 8 34 36 48 53 24 26 34 37 41 46 54 63 71 80 89 100 2 16 21 28 35 44 53 61 71 83 100 89 100	80 660 16 16 17 18 20 21 23 24 26 30 34 36 42 46 64 63 72 81 100 1 8 33 48 65 82 100		6 6	9	17									48	22	64	74	84	98	\$				8				
100 700 16 16 16 17 18 20 21 23 24 26 30 34 41 46 54 62 71 80 89 100	1 8 34 48 65 82 100 2 2 46 21 28 28 44 53 64 76 89 100 3 2 44 52 100 4 32 2 6 32 24 29 31 35 40 51 100 5 6 48 16 17 19 22 24 29 31 35 40 51 100 5 7 8 10 100 5 8 10 100 6 7 8 10 100 6 7 8 10 100 6 7 8 10 100 6 7 8 10 100 6 7 8 10 100 6 7 8 10 100 6 8 10 100 6 8 10 100 6 8 10 100 6 9 100		18	16	17									48	24	63	72	8	91	8								
1 8 34 48 65 82 100 2 16 21 28 35 41 71 83 100 3 24 35 42 48 55 72 91 100 4 32 40 16 17 13 100 31 40 48 55 72 91 100 6 40 16 17 18 20 22 24 42 48 55 75 93 100 10 80 16 17 18 20 22 24 42 48 55 75 93 100 10 80 16 16 16 17 18 20 22 24 25 24 25 83 40 45 53 84 75 93 100 10 80 10 10 10 10 10	1 8 34 48 65 82 100 2 1 21 28 35 44 53 64 71 93 100 3 24 18 25 26 32 38 45 53 61 71 93 100 4 32 10 22 26 31 36 40 61 71 93 100 6 40 16 17 19 22 24 28 55 29 100 10 60 16 17 18 20 22 24 25 63 75 100 10 60 16 16 17 18 20 22 24 25 25 36 47 48 56 66 66 66 67 100 12 20 21 22 22 24 26 36 44		4	18	17									46	24	62	7	80	83	98	9							
1 8 34 48 65 82 100 2 46 53 84 76 89 100 4 32 48 55 72 91 100 6 48 17 18 100 3 100 6 48 16 17 89 100 3 100 6 48 16 17 18 20 22 24 24 48 55 75 91 100 10 48 16 17 18 20 22 24 24 48 55 63 100 10 10 16 16 17 18 20 22 24 24 46 59 75 89 100 11 16 17 18 20 22 24 25 27 34 40 46 59 47 48 56	1 8 34 48 58 84 76 89 100 2 16 15 22 26 37 89 100 4 32 16 17 93 100 6 48 16 17 93 100 6 48 16 17 93 100 10 80 16 17 18 20 22 24 28 31 36 40 61 60 100 10 80 16 17 18 20 22 24 25 25 66 69 100 10 80 16 17 18 20 22 24 25 25 27 30 44 51 60 76 100 11 18 16 17 18 20 22 24 25 27 23 44 51 60																											
2 16 21 28 35 44 55 100 4 32 10 40 50 100 40 50 100 5 40 10 30 100 40 50 100 40 50 100 6 48 10 10 40 50 75 91 100 6 48 10 10 40 50 75 91 100 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	2 16 21 28 35 44 55 72 91 100 4 32 4 35 45 72 46 56 72 91 100 6 48 11 11 12 22 26 31 36 42 46 56 75 93 100 6 48 11 12 22 24 23 36 42 46 56 75 93 100 10 90 16		34	48	65																							
3 24 18 22 28 39 39 42 45 57 91 100 6 48 16 17 18 22 28 31 36 40 66 79 100 6 48 16 17 18 20 23 27 31 36 40 66 78 100 10 80 16 17 18 20 22 24 28 31 36 40 66 60 100 10 80 16 16 17 18 20 22 24 27 30 34 42 52 66 80 100 10 80 16 16 17 18 20 22 24 26 27 30 34 40 48 56 66 80 100 11 12 12 22 24 26 <td>4 5 24 18 51 24 18 51 100 5 40 16 18 20 23 27 31 36 40 46 59 75 93 100 6 48 16 18 20 23 27 31 36 40 46 59 75 93 100 10 48 10 48 59 75 93 100 10 48 10 48 59 75 93 100 10 10 12 16 17 18 20 22 24 26 23 44 56 68 87 100 12 16 16 16 17 18 20 22 24 26 23 44 56 66 87 100 12 16 16 17 18 19 21 22</td> <td></td> <td>5 5</td> <td>8 6</td> <td>25 6</td> <td>4 6</td> <td></td>	4 5 24 18 51 24 18 51 100 5 40 16 18 20 23 27 31 36 40 46 59 75 93 100 6 48 16 18 20 23 27 31 36 40 46 59 75 93 100 10 48 10 48 59 75 93 100 10 48 10 48 59 75 93 100 10 10 12 16 17 18 20 22 24 26 23 44 56 68 87 100 12 16 16 16 17 18 20 22 24 26 23 44 56 66 87 100 12 16 16 17 18 19 21 22		5 5	8 6	25 6	4 6																						
4 4 6 6 7 9 100 6 48 6 7 9 100 8 100 6 48 6 4 6 7 9 100 8 100 6 48 6 4 6 7 9 100 8 100 10 80 16 17 18 20 22 24 27 30 37 45 53 64 75 100 10 80 16 17 18 20 22 24 28 37 46 55 66 87 100 11 80 17 18 20 22 24 26 27 30 44 56 66 87 100 14 13 16 17 18 19 21 22 24 26 27 40 46 56 67 <td>5 40 16 18 20 23 27 31 35 40 61 64 79 100 6 48 16 16 17 19 22 24 29 31 36 40 61 64 79 96 100 10 60 16 16 17 18 20 24 28 31 46 64 75 100 12 96 16 17 18 20 21 23 26 27 30 34 45 56 68 87 100 14 142 16 16 17 18 20 21 23 25 27 39 44 51 60 78 100 16 17 18 19 21 22 24 28 31 36 44 51 60 78 100 16 17<!--</td--><td>n •</td><td>0 +</td><td>77</td><td>22</td><td>26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	5 40 16 18 20 23 27 31 35 40 61 64 79 100 6 48 16 16 17 19 22 24 29 31 36 40 61 64 79 96 100 10 60 16 16 17 18 20 24 28 31 46 64 75 100 12 96 16 17 18 20 21 23 26 27 30 34 45 56 68 87 100 14 142 16 16 17 18 20 21 23 25 27 39 44 51 60 78 100 16 17 18 19 21 22 24 28 31 36 44 51 60 78 100 16 17 </td <td>n •</td> <td>0 +</td> <td>77</td> <td>22</td> <td>26</td> <td></td>	n •	0 +	77	22	26																						
6 48 16 17 19 22 24 28 31 36 40 51 64 79 96 100 8 64 16 17 18 20 22 24 27 30 34 42 52 63 75 100 10 60 16 16 18 19 21 23 25 27 30 37 45 53 64 75 100 11 80 16 16 16 17 18 20 22 24 25 27 30 44 55 66 78 100 14 142 16 16 17 18 19 21 22 24 26 37 48 46 56 67 76 77 8 16 17 18 19 20 22 24 26 34 40 46 <td>6 48 16 17 19 22 24 28 31 36 40 61 64 79 96 100 10 80 16 16 16 16 16 16 16 16 16 16 16 16 16 17 18 20 22 24 27 30 37 45 53 64 75 100 12 86 16 16 16 17 18 20 22 24 28 34 40 48 56 66 87 100 14 142 16 16 17 18 20 22 24 26 28 34 40 48 56 66 87 100 18 14 20 22 24 26 28 34 40 46 52 67 84 100 18 16 17<</td> <td>, u</td> <td>. 4</td> <td>. «</td> <td>2 00</td> <td>23</td> <td></td>	6 48 16 17 19 22 24 28 31 36 40 61 64 79 96 100 10 80 16 16 16 16 16 16 16 16 16 16 16 16 16 17 18 20 22 24 27 30 37 45 53 64 75 100 12 86 16 16 16 17 18 20 22 24 28 34 40 48 56 66 87 100 14 142 16 16 17 18 20 22 24 26 28 34 40 48 56 66 87 100 18 14 20 22 24 26 28 34 40 46 52 67 84 100 18 16 17<	, u	. 4	. «	2 00	23																						
8 64 64 16 16 16 17 18 20 22 24 27 30 37 45 53 64 75 100 10 800 16 16 16 18 19 21 23 25 27 30 37 45 53 64 75 100 114 142 142 16 16 16 17 18 20 22 24 26 28 34 40 48 56 68 17 100 115 86 16 17 18 19 21 22 24 28 30 34 40 46 52 87 84 100 116 144 145 145 146 17 18 19 20 22 24 28 30 34 40 46 52 87 84 100 117 80 240 15 16 17 18 19 20 21 22 24 28 31 34 40 46 52 87 84 100 118 144 15 16 17 18 19 20 21 22 24 28 31 34 40 46 52 87 84 100 119 19 10 10 10 10 10 10 10 10 10 10 10 10 10	8 64 16 17 18 20 22 24 27 30 34 42 52 63 75 89 100 10 80 16 16 16 16 18 19 21 23 25 27 30 37 45 53 64 75 100 12 86 16 17 18 20 21 22 24 26 28 34 40 46 56 66 87 100 14 128 16 17 18 19 21 22 24 26 31 36 44 50 87 100 20 160 16 16 17 18 19 20 22 24 26 31 36 44 50 87 40 46 52 67 84 100 20 160 16 16 1	φ	16	17	6	22								100														
10 80 16 16 16 18 19 21 23 25 27 30 37 45 53 64 75 100 12 96 16 16 16 18 19 21 23 25 27 30 37 45 53 64 75 100 14 142 142 16 16 16 17 18 20 22 24 26 31 40 48 56 68 17 100 20 160 15 16 17 18 19 21 22 24 28 30 34 40 46 52 67 84 100 20 240 15 16 17 18 19 20 22 24 28 31 35 40 46 52 67 84 100 30 240 15 16 17 18 19 20 21 23 24 28 31 34 38 42 51 60 70 87 100 30 400 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 60 70 82 94 100 50 400 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 60 70 82 94 100 50 400 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 65 77 87 89 100 50 400 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 83 71 80 88 97	10 80 16 16 18 19 21 23 25 27 30 37 45 53 64 75 100 12 86 16 16 17 18 20 22 24 26 28 34 40 48 56 68 87 100 14 112 16 16 17 18 19 21 22 24 26 31 34 40 46 52 87 84 100 20 160 15 16 17 18 19 20 22 24 28 30 34 40 46 52 87 84 100 30 240 15 16 17 18 19 20 21 22 24 28 31 35 40 44 50 83 79 97 100 100 30 240 15 16 17 18 19 20 21 23 24 28 31 34 38 42 50 83 79 97 100 100 30 400 15 16 17 18 19 20 21 23 24 27 31 34 38 41 80 89 100 80 840 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 86 95 100 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 83 70 78 86 95 100	80	16	17	8	20								83	8													
12 96 16 16 16 17 18 20 22 24 26 28 34 40 46 56 68 87 100 14 112 16 16 17 18 20 21 23 25 27 32 38 44 51 60 78 100 15 16 17 18 19 21 22 24 26 30 34 40 46 52 67 84 100 20 160 15 16 17 18 19 20 22 24 28 30 34 40 46 52 67 84 100 30 240 15 16 17 18 19 20 22 24 28 31 35 40 45 50 63 79 97 100 100 40 320 400 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 60 70 82 84 100 50 400 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 60 70 82 84 100 50 400 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 65 78 82 100 50 400 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 83 71 80 88 97	12 96 16 16 17 18 20 22 24 26 28 34 40 48 56 68 87 100 14 112 16 16 17 18 20 21 22 24 26 31 38 44 51 60 78 100 15 16 17 18 19 21 22 24 26 30 34 40 46 55 72 91 100 20 160 15 16 17 18 19 20 22 24 25 29 34 38 44 50 63 79 97 100 100 30 240 15 16 17 18 19 20 21 23 24 25 39 34 38 44 50 63 79 97 100 100 40 320 400 15 16 17 18 19 20 21 23 24 27 31 34 38 41 49 58 97 100 60 480 15 16 17 18 19 20 21 23 24 27 31 34 38 41 49 58 97 100 60 480 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 97 100 60 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 97 100 60 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 97 100	9	16	18	18	19								75	8													
14 112 16 16 16 17 18 20 21 23 25 27 35 44 51 60 76 100 16 100 17	14 112 16 16 17 18 20 21 23 25 27 35 36 44 51 00 78 100 18 10 18 10	12	16	16	17	8 9								99	20 6	3 5												
18 144 158 16 17 18 19 21 22 24 26 30 34 40 46 52 87 84 100 20 160 15 16 17 18 19 20 22 24 28 31 35 40 45 52 87 84 100 30 240 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 60 70 82 94 100 50 400 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 60 70 82 94 100 60 480 15 16 17 18 19 20 21 23 24 27 31 34 38 41 49 58 67 77 87 98 100 60 480 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 97	18 144 15 16 17 18 19 21 22 24 26 3 1 34 45 50 67 67 100 100 100 100 100 100 100 100 100 10	4 4	9 9	9 9	F :	<u>ω</u> :								9	2 3	3 5	5											
10 144 15 10 17 10 19 20 22 24 25 29 34 38 44 50 63 79 70 100 100 100 100 100 100 100 100 100	10 144 15 16 17 18 19 20 22 24 25 35 44 56 63 75 70 100 30 240 15 16 17 18 19 20 21 23 24 25 34 35 40 44 54 65 76 65 77 87 94 100 40 320 15 16 17 18 19 20 21 23 24 27 31 34 37 41 49 56 74 83 93 100 60 480 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 89 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 70 78 88 97 100 100 800 15 16 17 18 19 20 21 23 24 <td>90 9</td> <td>9F 4</td> <td>φ φ</td> <td>1 1</td> <td>ρ α</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3 6</td> <td>67</td> <td>. 8</td> <td>5 5</td> <td></td>	90 9	9F 4	φ φ	1 1	ρ α								3 6	67	. 8	5 5											
20 150 15 16 17 18 19 20 21 23 24 25 31 35 40 44 54 65 76 92 100 30 240 15 16 17 18 19 20 21 23 24 27 31 34 38 42 61 60 70 82 94 100 60 480 15 16 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 89 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 89 97 100 800 15 16 17 18 19 20 21 <t< td=""><td>30 240 15 16 17 18 19 20 21 23 24 25 24 24 24 24 24 24 24 24 25 24 25 24 25 24 25 24 25 24 25 24 27 34 34 34 45 65 76 82 94 100 50 400 15 16 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 95 100</td><td>۶ ج م</td><td>ō 1</td><td>٠ • د</td><td>- 4</td><td>5 c</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3 3</td><td>63</td><td>79</td><td>97</td><td>5</td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	30 240 15 16 17 18 19 20 21 23 24 25 24 24 24 24 24 24 24 24 25 24 25 24 25 24 25 24 25 24 25 24 27 34 34 34 45 65 76 82 94 100 50 400 15 16 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 95 100	۶ ج م	ō 1	٠ • د	- 4	5 c								3 3	63	79	97	5	8									
40 220 15 16 17 18 19 20 21 23 24 27 31 34 38 42 51 60 77 87 94 100 50 400 15 16 17 18 19 20 21 23 24 27 31 34 37 41 49 57 65 74 83 93 100 80 480 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 70 78 88 95 100 800 15 16 17 18 <t< td=""><td>40 320 15 16 17 18 19 20 21 23 24 27 31 34 38 42 61 60 77 87 94 100 60 400 15 16 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 95 100</td><td>3 6</td><td>5 45</td><td>2 4</td><td>: 0</td><td>2 60</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>44</td><td>54</td><td>99</td><td>78</td><td>85</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	40 320 15 16 17 18 19 20 21 23 24 27 31 34 38 42 61 60 77 87 94 100 60 400 15 16 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 95 100	3 6	5 45	2 4	: 0	2 60								44	54	99	78	85	100									
50 450 15 16 17 18 19 20 21 23 24 27 31 34 38 41 49 58 67 77 87 98 100 60 480 15 16 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 70 78 88 97	50 450 15 16 17 18 19 20 21 23 24 27 31 34 38 41 49 58 67 77 87 98 100 60 480 15 16 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 80 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 100 80 80 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 88 95 100	8 8	, t	8	17	8 6								42	5	9	20	82	94	38								
60 480 15 18 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 86 95	60 480 15 18 17 18 19 20 21 23 24 27 30 34 37 41 49 57 65 74 83 93 100 80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 86 95 100	202	15	16	7	8								4	49	58	67	77	87	98	8							
80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 86 95	80 640 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 56 63 71 80 88 97 100 100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 86 95 100	09	15	16	17	18								4	49	22	99	74	83	93	100							
100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 86 95	100 800 15 16 17 18 19 20 21 23 24 27 30 34 37 41 48 55 63 70 78 86 95 100	80	15	18	17	18								41	48	26	63	71	80	88	87	100						
		8	15	18	17	18								4	48	92	63	2	78	86	98	100					į	

Table E.7: Existing Separation Tables for FHC 3 & 4

10 1.25 1.5 1.75 1.2 1.75 2 2.25 2.5 3 3.5 4 4.5 5 0 10 12 14 16 16 17 18 1.5 1.5 1.5 1.75 2 2.25 2.5 3 3.5 4 4.5 5 0 10 12 14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	15 2 25 3 35 4 45 5 6 7 8 9 10 12 14 15 15 15 15 15 15 15		H = -		38.4 1040 C				Emissivity Limiting R Emitted R	adiation adiation 1.5		9		12.6 K 168.0 K	1 12.6 kW/m^2 168.0 kW/m^2 9 10	5	4		e Pr	jection	Distanc 12			6:	٩	"		
10 10 10 10 10 10 10 10	Permitted unprotected area % BOUNDARY SEPARATION TABLES USING MIPROR IMAGE CONCEPT 100 100 100 100 100 100 100 1	6.0		1.5	- 6	2.5		3.5			2 2		, w	9 6.5	5 5	6 12	4 6	8 8	0.40								-	
100 55 67 100 56 70 100 57 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 58 70 100 59 70 100 59 70 100 59 70 100 59 70 100 59 70 100 59 70 100 59 70 100 59 70 100 50 70 70 100 50 70 70 100 50 70 70 100 50 70 70 100 50 70 70 100 50 70 70 100 50 70 70 100 50 70 70 70 70 70 70 50 70 70 70 70 70 70 50 70 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70 70 70 50 70 70 70	100 312 313 41 516 517 518 517 518 518 518 518 518 518 518 518 518 518		1			4	emitte	d unprot	acted ar	ea %					اه	OUNDA	RY SE	PARATIC	ON TABI	ES US	NG MI	RORII	MAGEC	ONCE	<u></u>			
26 57 100	2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	કં		20	8									3			9											
27 28 28 29 100 28 29 44 28 69 100 28 29 44 28 69 100 24 31 38 40 58 60 100 24 31 38 40 53 100 82 100 24 31 38 40 53 60 87 100 24 31 38 40 53 61 68 70 100 24 31 38 40 53 61 68 70 100 24 31 38 40 53 61 68 70 100 24 31 38 40 53 61 68 70 100 24 31 38 40 53 61 68 70 100 24 31 38 40 53 61	27 29 52 66 100 100 28 24 4 56 100 100 24 31 39 45 56 100 100 24 31 39 47 56 66 100 100 24 31 39 47 56 67 71 100 24 31 39 47 56 67 71 100 24 31 39 47 56 67 71 100 24 31 39 47 56 67 72 100 24 31 39 46 54 73 89 100 24 31 39 46 53 61 89 100 24 31 39 46 53 61 89 100 24 31 39 46 53 90 89	24 24		38	52	۳ ج د		5																				
2	2 5 3 4 4 6 6 6 8 5 100 2 4 3 1 3 9 4 6 5 6 9 5 7 4 97 100 2 5 1 3 1 3 9 4 6 5 9 9 9 7 100 2 5 1 3 1 3 9 4 6 5 9 9 9 7 100 2 7 1 3 1 3 9 4 6 5 9 9 9 7 100 2 7 1 3 1 3 9 4 6 5 9 9 9 7 100 2 8 1 3 1 3 9 8 6 5 9 9 1 100 2 8 1 3 1 3 9 9 6 5 9 9 1 100 2 9 1 3 1 3 9 9 6 5 9 9 1 100 2 9 1 3 1 3 9 9 6 5 9 9 1 100 2 9 1 3 1 3 9 9 6 5 9 9 1 100 2 9 1 3 1 3 9 9 6 5 9 9 1 100 2 9 1 3 1 3 9 9 6 5 9 9 1 100 2 9 1 3 1 3 9 9 6 5 9 9 1 100 2 9 1 3 1 3 9 9 6 5 9 1 1 100 2 9 1 3 1 3 9 9 6 5 9 1 1 100 2 9 1 3 1 3 9 9 6 5 9 1 1 100 2 9 1 3 1 3 9 9 6 5 9 1 1 100 2 9 1 3 1 3 9 9 6 5 9 1 1 100 2 9 1 3 1 3 9 9 6 9 9 1 1 100 2 9 1 3 1 3 9 9 6 9 9 1 1 100 2 9 1 3 1 3 9 9 6 9 9 1 1 100 2 9 1 3 1 3 9 9 6 9 9 1 1 100 2 9 1 3 1 3 9 9 6 9 1 1 1 100 2 9 1 3 1 3 9 9 6 9 1 1 1 100 2 9 1 3 1 3 9 9 6 9 1 1 1 100 2 9 1 3 1 3 9 9 9 1 1 1 100 2 9 1 3 1 3 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	. .		27	38	25																						
24 31 44 51 62 45 60 70 100 24 31 36 46 56 64 70 100 24 31 39 47 56 64 70 100 24 31 39 47 56 64 70 100 24 31 39 46 56 46 70 70 70 24 31 39 46 56 46 70 70 70 70 24 31 39 46 56 47 70 <td>24</td> <td>4:</td> <td></td> <td>55</td> <td>32</td> <td>47</td> <td>19</td> <td></td> <td></td> <td>8 8</td> <td></td>	24	4:		55	32	47	19			8 8																		
24 31 36 46 56 60 80 100 24 31 39 47 56 84 73 100 24 31 39 47 56 84 73 89 100 24 31 39 46 55 61 73 89 100 24 31 39 46 53 61 66 73 91 100 24 31 39 46 53 61 66 73 91 100 24 31 39 46 53 61 66 73 91 100 24 31 39 46 53 61 66 73 91 100 24 31 39 46 50 91 100 91 100 24 31 39 46 50 91 100 91 100	24 31 39 46 56 66 77 8 77 8 100 24 31 39 47 6 56 64 77 8 100 24 31 39 47 6 56 64 77 8 100 24 31 39 48 55 64 77 8 1100 24 31 39 48 55 64 77 8 1100 24 31 39 48 55 64 77 8 1100 24 31 39 48 55 64 77 8 1100 24 31 39 48 55 64 77 8 1100 24 31 39 48 55 64 65 70 70 8 1100 24 31 39 48 55 70 70 8 100 24 31 39 48 55 8 10 68 77 8 1100 24 31 39 48 55 8 100 24 31 39 48 55 8 100 24 31 39 48 55 8 100 24 31 39 48 55 8 100 24 31 39 48 55 8 100 24 31 39 48 55 8 100 24 31 39 48 55 8 100 24 31 39 48 55 8 100 25 4 31 39 48 55 8 100 26 5 6 7 8 8 100 27 5 7 8 8 7 7 7 8 8 7 7 7 7 7 7 7 7 7 7	1 1		22	¥ %	4 4	8 5				8																	
24 31 39 48 56 64 72 81 100 24 31 39 47 56 64 72 81 100 24 31 39 46 56 64 72 81 100 24 31 38 46 53 61 68 76 61 70 24 31 38 46 53 61 68 76 61 70 24 31 38 46 53 61 68 76 61 70 24 31 38 46 53 61 68 76 61 70 70 24 31 38 46 53 61 68 76 61 70 70 70 24 31 38 46 53 61 68 76 70 70 70 70 70 70	24 31 36 47 56 66 73 81 100 24 31 36 47 56 66 72 81 100 24 31 38 46 55 66 72 81 100 24 31 38 46 55 61 68 76 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 90 100 24 31 38 46 53 60 68 75 90 100 24 31 38 46 50 100 90 100 24 31 38 46 50 100 90 100	- +		7 7	32	4	64					8																
31 34 47 55 50 77 80 100 31 38 46 55 61 68 76 91 100 31 38 46 53 61 68 76 91 100 31 38 46 53 61 68 76 91 100 31 38 46 53 61 68 76 91 100 31 38 46 53 61 68 76 91 100 31 38 46 53 61 68 76 91 100 31 38 46 53 60 68 75 90 100 31 46 53 60 68 75 90 100 31 46 50 90 100 90 100 31 46 57 90 100 9	31 39 47 55 63 72 61 100 31 39 46 54 62 70 78 61 100 31 39 46 53 61 66 76 100 31 38 46 53 61 68 76 91 100 31 38 46 53 61 68 76 91 100 31 38 46 53 61 68 76 91 100 31 38 46 53 61 68 75 90 100 31 38 46 53 61 68 75 90 100 31 39 46 56 91 100 91 100 31 39 46 56 91 100 91 100 31 39 47 56 89 1	7;		5 4	<u>ج</u> ج	8 8	8 (8 8																
24 31 36 46 54 62 77 80 100 24 31 38 46 53 61 66 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 75 90 100 24 31 38 46 53 61 68 75 90 100 24 31 38 46 53 61 68 75 90 100 24 31 38 46 57 69 70 80 100 17 24 38 46 57 69 70 80 100 16 19 39 40 57 80<	24 31 38 46 54 62 77 79 99 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 24 31 38 46 55 61 68 76 91 100 25 4 31 38 46 55 61 68 76 91 100 26 57 8 91 100 27 4 1 10 20 20 20 20 20 20 20 20 20 20 20 20 20	- +		2 2	5 8	8 8	4 4					3 8																
24 31 38 46 54 62 100 100 24 31 38 46 53 61 69 76 91 100 24 31 38 46 53 61 68 75 90 100 24 31 38 46 53 61 68 75 90 100 24 31 38 46 53 61 68 75 90 100 24 31 38 46 53 60 68 75 90 100 24 31 38 46 53 60 68 75 90 100 24 31 36 46 57 90 100 90 100 21 32 46 50 10 90 100 90 100 90 100 14 19 50 10 <td< td=""><td>24 31 38 46 54 65 70 79 86 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 44 10 24 28 32 40 48 59 70 86 100 44 17 20 24 28 32 39 40 49 58 69 90 22 100 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 45 17 20 24 27 31 35 38 46 53 61 68 70 46 17 20 24 27 31 35 38 46 53 61 68 70 47 17 20 24 27 31 35 38 46 53 61 68 70 48 17 20 24 27 31 35 38 46 53 61 68 70 49 17 20 24 27 31 35 38 46 53 61 68 70 40 17 20 24 27 31 35 38 46 53 61 68 70 41 17 20 24 27 31 35 38 46 53 61 68 76 91 100</td><td>1 -</td><td></td><td>5 7</td><td></td><td>36</td><td>9</td><td></td><td></td><td></td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	24 31 38 46 54 65 70 79 86 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 44 10 24 28 32 40 48 59 70 86 100 44 17 20 24 28 32 39 40 49 58 69 90 22 100 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 44 17 20 24 27 31 35 38 46 53 61 68 70 45 17 20 24 27 31 35 38 46 53 61 68 70 46 17 20 24 27 31 35 38 46 53 61 68 70 47 17 20 24 27 31 35 38 46 53 61 68 70 48 17 20 24 27 31 35 38 46 53 61 68 70 49 17 20 24 27 31 35 38 46 53 61 68 70 40 17 20 24 27 31 35 38 46 53 61 68 70 41 17 20 24 27 31 35 38 46 53 61 68 76 91 100	1 -		5 7		36	9						8															
24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 25 31 38 46 53 61 68 76 91 100 26 31 38 46 53 61 68 76 91 100 27 31 32 42 56 71 68 63 100 44 47 21 25 20 35 41 47 61 76 84 100 44 47 20 24 28 32 37 41 51 63 88 100 44 47 20 24 28 32 37 41 51 63 69 70 81 100 44 47 20 24 27 31 35 38 46 53 61 68 70 44 47 20 24 27 31 35 38 46 53 61 68 76 91 100	24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 90 68 75 90 100 24 31 38 46 53 90 68 75 90 100 24 31 38 46 53 90 68 75 90 100 24 31 38 46 53 91 90 92 100 24 31 38 46 53 91 90 92 100 25 31 38 46 59 91 90 92 100 26 40 41 47 50 54 28 32 38 40 50 60 77 84 100 26 41 47 20 24 27 31 35 38 46 53 61 68 70 27 41 47 20 24 27 31 35 38 46 53 61 68 70 28 41 47 20 24 27 31 35 38 46 53 61 68 76 91 100 28 54 57 68 57 68 70 91 90 92 100 29 57 68 70 91 100	17		5 7	3	38	46						8 8															
24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 60 68 76 91 100 24 31 38 46 53 60 68 76 91 100 21 31 36 46 53 60 68 75 90 100 15 21 32 34 56 70 100 100 15 21 28 46 57 69 100 100 14 18 22 20 46 57 69 100 14 19 22 20 46 57 69 100 14 19 22 20 40 50 100 100 14 17 21 25 30 40 50 100 14 17 20	24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 61 68 76 91 100 24 31 38 46 53 60 68 75 90 100 21 31 36 46 53 60 68 75 90 100 15 21 28 40 57 68 100 100 15 21 28 46 57 68 100 100 14 18 22 24 46 57 68 100 14 18 22 24 46 57 68 100 14 17 21 25 29 44 56 68 100 14 17 21 25 30 44 56 68 100 14 1	÷ ;		7 7	ب ع	8 8	9 4						8 8															
24 31 38 46 53 61 68 75 90 100 24 31 38 46 53 60 68 75 90 100 21 31 46 51 60 68 75 90 100 21 31 46 61 80 100 83 100 15 21 28 46 57 69 83 100 14 18 22 32 40 48 59 100 14 19 25 20 61 100 88 100 14 17 21 25 20 34 45 56 69 100 14 17 21 25 20 34 44 56 69 100 14 17 21 25 20 34 44 56 69 100 1	24 31 38 46 53 61 68 75 90 100 24 31 38 46 53 60 68 75 90 100 21 31 38 46 51 60 68 75 90 100 15 21 23 24 66 77 69 83 100 15 19 25 29 46 57 69 100 14 18 25 20 48 50 60 100 14 17 21 25 30 35 41 47 61 70 96 100 14 17 21 25 30 35 41 47 61 76 94 100 14 17 21 25 30 35 41 47 61 76 96 <t>100 14 17<!--</td--><td>•</td><td></td><td>7 7</td><td>ج ج</td><td>88</td><td>6 4</td><td></td><td></td><td></td><td></td><td></td><td>8 8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t>	•		7 7	ج ج	88	6 4						8 8															
24 31 38 46 53 60 68 75 90 100 24 31 38 46 53 60 68 75 90 100 21 31 45 61 80 100 68 75 90 100 15 24 33 44 56 70 88 100 88 100 15 19 46 57 69 100 88 100 14 18 25 24 46 57 69 100 14 18 25 24 48 57 69 100 14 17 21 25 30 35 41 7 61 70 96 100 14 17 21 25 30 35 41 51 69 100 60 100 60 100 60 100 60 <	24 31 38 46 53 60 68 75 90 100 21 31 46 53 60 68 75 90 100 21 31 45 61 80 100 68 75 90 100 15 24 23 44 56 71 68 100 68 70 68 100 14 18 25 24 46 57 69 100 68 100 14 18 25 24 46 57 69 100 68 100 14 18 25 24 46 57 69 100 68 100 68 100 14 16 26 26 86 100 68 100 68 100 68 100 68 100 68 100 68 100 68 100 68	-	7	54	3	38	9						8 8															
36 57 83 100 17 24 35 61 80 100 15 21 23 34 46 57 68 100 14 18 22 32 48 52 61 83 100 14 18 22 27 32 36 43 52 61 83 100 14 18 22 27 32 36 45 52 68 88 100 14 17 21 25 29 34 45 52 68 88 100 14 17 21 25 29 34 45 56 74 100 14 17 20 24 28 33 37 42 53 65 74 87 100 14 17 20 24 28 32 34 40 53 64<	36 57 83 100 17 24 33 44 56 71 88 100 15 19 23 44 56 71 88 100 14 18 23 29 48 59 70 98 100 14 18 23 29 46 61 83 100 14 18 23 29 46 89 100 14 18 22 29 36 47 56 88 100 14 18 23 29 43 52 61 89 100 14 17 21 25 29 34 47 56 89 100 14 17 20 24 28 33 47 56 89 100 14 17 20 24 28 32 34 40 49 58<		7 7	7 7	<u>ہ</u> ہ	38 38	8 4						88															
36 57 83 100 17 24 35 61 100 15 21 28 36 10 3 100 15 21 28 36 46 57 69 83 100 14 18 23 20 46 57 69 83 100 14 18 23 20 36 43 52 61 83 100 14 17 21 25 29 34 36 40 40 86 100 14 17 21 25 29 34 36 40 40 80 100 14 17 20 24 26 89 100 30 14 17 20 24 26 89 100 30 40 40 50 60 100 14 17 20 24 26<	36 57 83 100 11 24 56 11 88 100 15 24 28 36 46 57 69 83 100 15 19 25 32 40 48 50 70 96 100 14 18 23 29 36 43 52 61 83 100 14 17 21 25 29 34 35 41 47 61 70 96 100 14 17 21 25 29 34 35 41 47 61 70 96 100 14 17 21 25 29 34 35 41 56 69 85 100 14 17 20 24 28 33 37 42 58 89 100 14 17 20 24 28<																											
17 24 33 44 56 71 88 100 15 19 22 28 46 57 69 100 14 18 23 29 36 45 52 61 83 100 14 18 23 29 36 45 52 68 88 100 14 18 23 29 36 46 52 69 100 14 17 21 25 30 35 41 47 61 76 94 100 14 17 21 25 30 35 41 47 61 76 94 100 14 17 20 24 28 32 36 60 71 83 100 14 17 20 24 28 32 36 40 50 60 71 87 100	17 24 56 71 88 100 15 21 28 36 46 57 89 100 14 18 23 29 36 46 52 61 83 100 14 18 23 29 36 45 52 61 88 100 14 17 21 25 30 35 41 47 61 78 94 100 14 17 21 24 28 33 37 42 53 65 78 93 100 14 17 20 24 28 32 37 41 51 62 74 87 100 14 17 20 24 28 32 37 41 51 62 74 87 100 14 17 20 24 28 32 34 40 50<	0 ÷	- 4	38	31	83	% to																					
15 2.5 2.5 3.6 4.8 5.9 70 86 100 14 18 22 27 32 38 45 52 88 88 100 14 17 21 24 28 32 37 41 57 81 89 100 14 17 20 24 28 32 38 40 50 60 71 83 96 100 14 17 20 24 28 32 38 40 50 60 71 83 96 100 14 17 20 24 28 32 38 46 53 84 6 53 81 86 100 14 17 20 24 27 31 35 38 46 53 81 86 50 71 89 100 14 17 20 24 27 31 35 38 46 53 81 86 53 81 86 70 14 17 20 24 27 31 35 38 46 53 81 86 53 81 86 70	15 1 25 32 40 40 50 70 90 100 100 100 100 100 100 100 100 100	7 1	۰,	7	7 7	8 8	44					8																
14 18 23 29 36 43 52 61 83 100 14 18 22 27 32 38 45 52 68 81 100 14 17 21 25 30 35 41 47 61 76 94 100 14 17 21 25 28 33 37 42 53 65 100 14 17 20 24 28 33 37 42 53 65 100 14 17 20 24 28 33 40 50 60 71 83 96 100 14 17 20 24 26 80 80 92 100 14 17 20 24 26 80 80 92 100 14 17 20 24 25 84 85 80<	14 18 23 29 36 43 52 61 83 100 14 18 22 27 32 36 45 52 68 88 100 14 17 21 25 39 35 41 47 61 76 94 100 14 17 21 24 28 33 37 42 53 65 78 30 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 49 56 64 73 82 100 14 17 20 24 27 31 35<		· - =	5 12	9 6	3 52	3 8						8															
14 18 22 27 32 38 45 52 68 88 100 14 17 21 25 30 35 41 47 61 76 94 100 14 17 21 24 28 32 37 41 56 69 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 49 58 69 100 14 17 20 24 28 32 36 40 49 58 69 100 14 17 20 24 27 31 35 38 46 53 61 69 100 14 17 20 24 27 31 35 38 46 53<	14 18 22 27 32 38 45 52 68 88 100 14 17 21 25 30 35 41 47 61 76 94 100 14 17 21 24 28 33 37 41 51 62 74 87 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 27 31 35 38 46 55 64 70 90 90 100 14 17<		=	4	8	83	8																					
14 17 21 25 39 34 47 61 79 100 14 17 20 24 28 33 37 42 53 65 71 83 96 100 14 17 20 24 28 32 37 41 51 62 74 87 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 27 31 35 39 47 55 64 73 82 100 14 17 20 24 27 31 35 38 46 53 61 69 100 14 17 20 24 27 31 35 38 46 53 61 69 100 14 17 20 24<	14 17 21 25 39 34 46 56 69 51 100 14 17 20 24 28 33 37 42 53 65 78 93 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 27 31 35 39 47 55 64 73 82 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 <		Ξ:	4 :	9 ;	2 2	27							8														
14 17 21 24 28 33 37 42 53 65 78 93 100 14 17 20 24 28 32 37 41 51 62 74 87 100 14 17 20 24 28 32 36 40 56 60 71 83 96 100 14 17 20 24 27 31 35 39 47 55 64 70 79 96 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 76 100 14 17 20 24 27 31 35 38 46 53 61 69<	14 17 21 24 28 33 37 42 53 65 78 93 100 14 17 20 24 28 32 37 41 51 62 74 87 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 27 31 36 39 47 55 64 73 82 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100		= =	4 4	- 4	2 2	2 5							3 8														
14 17 20 24 28 32 37 41 51 62 74 87 100 14 17 20 24 28 32 38 40 56 60 71 83 98 100 14 17 20 24 27 31 35 39 46 56 60 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 76 91 100 14 17 20 24 27 31 35 38 46 53<	14 17 20 24 28 32 37 41 51 62 74 87 100 14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 27 31 35 36 47 55 64 73 82 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 76 91 100 14 17 20 24 27 31 35 38 46 53<		=	4	11	. 7.	24								8													
14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 49 56 64 73 82 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 76 92 100 14 17 20 24 27 31 35 38 46 53 61 69 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38<	14 17 20 24 28 32 36 40 50 60 71 83 96 100 14 17 20 24 28 32 36 40 49 58 69 80 92 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100		Ξ	4	1	8	24																					
14 17 20 24 28 32 36 40 49 58 69 80 92 100 14 17 20 24 27 31 35 36 47 55 64 73 82 100 14 17 20 24 27 31 35 36 46 53 61 69 77 94 100 14 17 20 24 27 31 35 36 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100	14 17 20 24 28 32 36 40 49 58 69 80 92 100 14 17 20 24 27 31 35 39 47 55 64 73 82 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 68 76 92 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100		Ξ	14	11	50	24	ŵ.																				
14 17 20 24 27 31 35 39 47 55 02 100 14 17 20 24 27 31 35 38 46 54 62 70 79 96 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100	14 17 20 24 27 31 35 39 47 55 54 75 100 14 17 20 24 27 31 35 38 46 54 62 70 79 96 100 14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100		= :	7 ;	: 4	2 2	7 7									8 8												
14 17 20 24 27 31 35 38 46 53 61 69 77 84 100 14 17 20 24 27 31 35 38 46 53 61 69 77 84 100 14 17 20 24 27 31 35 38 46 53 61 68 76 81 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100	14 17 20 24 27 31 35 38 46 53 61 69 77 94 100 14 17 20 24 27 31 35 38 46 53 61 69 78 92 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100		= =	5 t	- 4	2 E	74										8											
14 17 20 24 27 31 35 38 46 53 61 69 76 92 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100	14 17 20 24 27 31 35 38 46 53 61 69 76 92 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100	Ì	: <u>=</u>	. 4	11	2 8	24										8											
14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100	14 17 20 24 27 31 35 38 46 53 61 68 76 91 100 14 17 20 24 27 31 35 38 46 53 61 68 76 91 100		Ξ	4	17	8	24										8											
14 17 20 24 27 31 35 38 46 53 61 68 76 91 100	14 17 20 24 27 31 35 38 46 53 61 68 76 91 100		=	14	11	8	54										8											
	Filename, C3areas xis		Ξ	14	17	20	24										8											

Table E.7: Existing Separation Tables for FHC 3 & 4 (cont'd)

Fire Hazard Category	tegory		FHC	l II	3 & 4				Emissivity	À.			14		-				Œ.	Flame Projection Distance	jection	Distanc	d)			۵.	н	0	Ε	
Firecell Temperature	· diffe			u	1040	U			Limiting	Limiting Radiation Emitted Radiation	5 5		11 11		12.6 kW/m^2 168.0 kW/m^2	12.6 kW/m^2 68.0 kW/m^2			2											
Radiation Distance Separation Distance	ance tance = S	E		5:1	00	2.5	e e	3.5	4 4	2, 4 8, 5	2.2	တ တ	~ ~	& &	0.0	5 5	12	41	16 16	18 81	20	22 2	24 2	26 2 26 2	28 30 28 30	32	34	36	38	40
(Radiation + Projection) Boundary Distance =	ğ	.) =0.55 m	9.0	0.75	-	1.25	5.	1.75	2	2.25	2.5	m	3.5	4	5.5	S	9	7	8	6	10	=	12 1	13 14	4 15	91	71	18	19	50
Rectangle Size							Permit	Permitted unprotected area %	otected	area %) <u>6</u> 61	OUNDA	RY SE	PARATI	BOUNDARY SEPARATION TABLES USING MIRROR IMAGE CONCEPT	LES US	M DNI	RROR II	MAGEC	ONCEP	ы				
Σ E	Ae m^2																													
3 1	ε		18	53	43	19	83	90	1																					
e e	တ တ		<u> </u>	14	24 85	33	4 E	& &	2 8	88	5 5	18																		
	2 2		5	2 5	91	20	58	32	39	8 6	57	79	8 8	8																
ი ო	15		o 0	2 5	4 4	18	2 33	22 58	3 3	38	4 4 8	57		83	8															
	54		, o	: =	£	9	19	22	58	3 8	38	47																		
3 10	30		6	Ξ	5	15	18	77	54	58	32	41			11	95	8													
	36		O	Ξ	13	15	18	20	23	27	30	88																		
	45		0)	Ξ:	ن :	12	; ;	2 8	8 8	9 4	& &	88 4						3 5								٠				
	8 7		D	Ξ;	5 5	5 .	2 :	2 5	2, 5	25	58	S 5						3 2												
	55 G		00 0	F	5 6	ر د ب		2 0	3 5	2, 29	2 6	3 8						8 8												
2 6	8 8		. 0	;	5 6	. t		2 4	2 2	24	28	32							8											
	5 5		0	= =	5 5	. t	17	9 20	1 7	24	92	3							16		8									
	150		0	=	13	15	11	18	21	24	28	31									8									
3 60	180		6	=	13	15	11	19	21	24	28	31								96	2									
	240		0	=	13	15	17	19	21	54	98	31									8									
	300		6	£	13	15	17	19	21	24	28	3	36	14							8									
			9	3	ac	2	a	a	5																					
4 4	4 0		0 ;	7 4	8 6	7 80	0 %	8 4	3 6	9	23	8																		
4 4	o C		10	5 5	1 9	2 8	8 8	32	3 6	8 8	24	62	8																	
4	. 6		6 6	Ξ	4	11	7	58	9	38	45	91		8																
4	20		6	10	12	5	18	22	27	32	37	20																		
4 6	24		60	10	12	14	11	20	24	28	33	44																		
4 8	32		80	10	-	13	15	18	21	24	28	36																		
4 10	40		80	9	F	13	15	11	18	22	25	32						8 8												
4 12	48		80	თ	=	12	4	18	18	51	23	29							8											
4 14	28		œ	0	Ξ:	12	4	16	18	20	22	28							3 8											
4 16	64		æ	o	F	12	14	16	18	20	22	27							3 8											
18	22		α (o (F ;	2 5	:	15	÷ ;	6 6	5 5	2 2									2									
	08 ÷		∞ (o n (= ;	7 (4 ;	C 4		2 2	7 6	2 6									3 8									
	25		ю с	o c	- ;	4 5	4 5	0 4	7 +	s	2 6	24										8								
4 4	2 20		0 00	0 0	-	1 2	4	5 5	17	6	2 2	24	28	31	35	39	47	26	92	75 8	86	97 10	8							
	240) α	σ	=	12	14	15	17	18	20	24																		
9 6	230		ο α	n 0	: ;	1 0	4 4	j t		0 %	3 6	20											96 10	0						
	32S		ρα	n 0	: :	7 5	4 4	. ř.	: ;	5 E	2 02	24											100	0						
	ì		,				i.	i.																						

Table E.7: Existing Separation Tables for FHC 3 & 4 (cont'd)

			- 1															-	ĺ							C	1				1
Fire Hazard Category	Category	L	ı Y	2	۵ ۹			نہ س	Emissivity Limiting R	ry Radiation			L 11		12.6 K	W/m^2			Ē,		Jection	Cistan	D.			Ľ	II			E	
Firecell Temperature	perature	F	"		1040 C			Ш	mitted	Emitted Radiation	ے		"		168.0 K	168.0 kW/m^2		\dashv									1				1
Radiation Distance Separation Distance	stance Distance = S m			5.1	2 2	2.5	ее	3.5	4 4	4.5 4.5	S CO	9 9	~ ~	& &	0 0	5 5	2 2	4 4	91	8 €	2 2	2 2	24	26	28	8 8	32	34	36	38 88	40
(Radiation + Projection) Boundary Distance =	Projection) stance =0.5S m	F	0.5 0	0.75	-	1.25	5.	1.75	2	2.25	2.5	es es	3.5	4	5.4	S	90	7	80	6	5	Ę		5	4	5	91	1,	18 1	19 2	20
Rectangle Size	ize					۵	ermitted	1 unprof	Permitted unprotected area	rea %						📓	BOUNDARY SEPARATION TABLES USING MIRROR IMAGE CONCEPT	RY SEF	ARATI	ON TAB	LES U	M ONIS	RROR	MAGE	CONCE	4	1				1
ĭ E	A• a^2																														
5	2		17	52	35	47		76	94		1	l															1				1
	0			15	19			40	48	28				•									,								
	15			2 5	4 5			3 28	34						8																
ი ი	8 %		, , ,	2 2	7 =	ō ‡	ō 5	7 6	3 7		3 6	8 4	8 28	88	3 2	8															
				. 6	: =	13		11	8																						
			80	6	5	12	13	15	18					-		88	93	8													
	ر ج		60	o	으	F	೮	₹ :	9																						
			& (.	<u>و</u> ج	Ξ;	2 5	₹;	9 4	14											5										
2 4 4 4					2 5	= =	2 C	<u> </u>	5 1												3 8										
	8 8				2 2	: Ξ	1 2	. E	. 1 5										. .	99	8 8										
	21		80	6	5	F	12	13	15	16																					
			8	8	우	F	12	5	4	16	17																				
			æ	6	9	F	12	5	4													82									
			6 0 (6 (<u>و</u> :	:	2 5	<u>ت</u> :	4 :																ς:						
	8 8		x 6	on c	2 5	= ;	2 5	2 5	4 4	ŭ f																S					
3 5			, w		2 0	: ;	1 2	5 E	4		1												75 8	82 8	: O	98 100	Q				
																															F
9	80		17	52	34	44	26	69	85				;																		
				4 :	18	53	8 3	36	5 43						8																
n 4				= =	4 5	- 1	1 7	2 2	24	28 29	33 42		56 7	3 2	88	8															
				0	=	13	5	17	8								8														
9			80	6	9	12	1	16	18							73 10															
			8	8	<u>و</u>	Ξ:	12	4	9 :																						
8 4	2 60		ec e	о «		2 5	7 :	5 5	4 4	5 5		3 5		30.		40 6	57 7	09 74													
) w	, w	. 0	e 은 은	: =	: 2	<u> </u>										82 10	18	8										
			60	6 0	. 6	9	٠ ټ	12	13																						
			8	80	6	9	Ŧ	12	13	Ĭ.												8									
			80	80	6	9	=	12	13	4																					
			.	.	о	우 :	.	2 :	£ :																						
			œ	6 0	0	9	=	12	5																						
			.	eo e	o (e ;	= ;	2 5	<u>د</u> د	7 ;	ر د با											65 /3	2 81	6 3	8 8	9 5					
			x c		. c	2 9	= ;	7 5	2 5																				1		
B 6	084		.		.	2 9	= ;	<u> </u>	2 \$		5 ¥		2 6														800	3 5	5		
	-		0	0	a	2		7	2	<u>.</u>																				¥	
	1													J		5												Filens	Fllens 3 C3areul xis	are. x	S

Table E.7: Existing Separation Tables for FHC 3 & 4 (cont'd)

	32 34 36 38 32 34 36 38 16 17 18 19									8 8	78 85 91 98 74 80 86 92														10000
	30 30	E E									72												85		
	28 14	CONO						8			64												9 2 8		
	26 26 13	MAGE									59										8		68		
900	24 24 12	MIRROF									54								8	8 8					
n Distar	22 2	SING									50									8 8					
Flame Projection Distance	2 2 2	BLEST			8 5						. 45 45									292					
a Be	81 8	ION TA									£ 64									93					
	91 8	BOUNDARY SEPARATION TABLES USING MIRROR IMAGE CONCEPT			8 4 5															52					
	4 4 ~	ARY SE		8	98 4 8	25	رد 48	37	34	33	3.3				. 8					4 4					
	27 2	OUND	8	99										2						33					
W/m^2	5 5		t. 185, 1	76																92					
12.6 kW/m^2 168.0 kW/m^2	0 0 4.		1	63																3 2					
	ω ω 4		100 83 83																100	2 2					
11 11 11	7 7 3.5		50 2							17			1 88							1 2			5 5		
	99 8		351					15 		15										15			4 4		
۰ د	5 5.5		38 8 8 38 8 8									8	25												
Emissivity Limiting Radiation Emitted Radiation	4.5	8	93 33 26									1 18													
Emissivity Limiting Ra Emitted Ra	44 ()	ected as	8 4 5 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4 C C							74												: =	
	3.5	Permitted unprotected area	65 34 19		5 2 5	Ξ:	==	= =	=	==	==	62											0 0		
	ω ω <u>τ</u> .	ermittee	53 20 16	4 6	= = =	2 0 0	2 9	0 0	10	5 5	5 5	15		9 4		12			9 9				on on		
	2.5		45 16 41	2 =	5 5 5	9 00 0	n 00	a o	o	ത ത	0.0	14	22	13	2	= 5					o	6	o a	. O	
3 & 4 1040 C	44 -		33 13 15	6 6			D 00	o o	60	. 00 00	0.0	32	18	13	9	₽ ¢		6	о о	o co	æ	8 0			
"	1.5		4 4 1 0	0 0	00 00 00		0 60	∞ <i>∞</i>	80	m m	80 8 0	24	4	1 4	. 0	0 0	0 00	80		. w	æ	80	x &	ω ω	- 39
" " E =	t t 0.5		7100	& &			; n eo	eo e⊘	80	10 80	80 80	17	=		0 00	eo 6	0 00	80		0 60	æ	8	x x	0 00	
	= S = -0.5S =																								
ure	9 9	A & B A & B	7 4 2 2 2 8 8 2 8	35	70	88	126	140	280	350 420	700	8	16	3 24	40	48	. 8	96	112	144	160	240	320	480	
rire Hazard Category Firecell Temperature	Radiation Distance Separation Distance = (Radiation + Projection) Boundary Distance =	1/27	- 4 6 4			4 4		28			500 7	-	2 7		5				44				50 3		
cell Te	diation diation undary	Rectangle Size		~ ~	100						. 8														

FIRE ENGINEERING RESEARCH REPORTS

0544		I D Dolligon
9511 0512	Full Residential Scale Backdraft	I B Bolliger P A Enright
9512 0512	A Study of Full Scale Room Fire Experiments	J T Gerlich
9513	Design of Load-bearing Light Steel Frame Walls for Fire Resistance	# 1 Genter
9514	Full Scale Limited Ventilation Fire Experiments	D J Millar
9515	An Analysis of Domestic Sprinkler Systems for Use in New Zealand	FRahmanian
9611	The Influence of Non-Uniform Electric Fields on Combustion Processes	M A Belsham
9612	Mixing in Fire Induced Doorway Flows	J M Clements
9613	Fire Design of Single Storey Industrial Buildings	B W Cosgrove
9614	Modelling Smoke Flow Using Computational Fluid Dynamics	T N Kardos
9615	Under-Ventilated Compartment Fires - A Precursor to Smoke Explosions	A R Parkes
9616	An Investigation of the Effects of Sprinklers on Compartment Fires	M W Radford
9711	Sprinkler Trade Off Clauses in the Approved Documents	G J Barnes
9712	Risk Ranking of Buildings for Life Safety	J W Boyes
9713	Improving the Waking Effectiveness of Fire Alarms in Residential Areas	T Grace
9714	Study of Evacuation Movement through Different Building Components	P Holmberg
9715	Domestic Fire Hazard in New Zealand	KDJ Irwin
97/6	An Appraisal of Existing Room-Corner Fire Models	D C Robertson
9717	Fire Resistance of Light Timber Framed Walls and Floors	G C Thomas
9718	Uncertainty Analysis of Zone Fire Models	A M Walker
9719	New Zealand Building Regulations Five Years Later	T M Pastore
9811	The Impact of Post-Earthquake Fire on the Built Urban Environment	R Botting
9812	Full Scale Testing of Fire Suppression Agents on Unshielded Fires	M J Dnnn
9813	Full Scale Testing of Fire Suppression Agents on Shielded Fires	N Gravestock
9814	Predicting Ignition Time Under Transient Heat Flux Using Results from Constant Flux Experiments	A Henderson
9815	Comparison Studies of Zone and CFD Fire Simulations	A Lovatt
9816	Bench Scale Testing of Light Timber Frame Walls	P Olsson
9817	Exploratory Salt Water Experiments of Balcony Spill Plume Using Laser Induced Fluorescence Technique	E Y Yii
9911	Fire Safety and Security in Schools	R A Carter
9912	A Review of the Building Separation Requirements of the New Zealand Building Code Acceptable Solutions	J M Clarke
9913	Effect of Safety Factors in Timed Human Egress Simulations	K M Crawford
9914	Fire Response of HVAC Systems in Multistorey Buildings: An Examination of the NZBC Acceptable Solutions	M Dixon
9915	The Effectiveness of the Domestic Smoke Alarm Signal	C Duncan

9916	Post-flashover Design Fires	R Feasey
9917	An Analysis of Furniture Heat Release Rates by the Nordtest	J Firestone
99/8	Design for Escape from Fire	HJ Garrett
9919	Class A Foam Water Sprinkler Systems	D B Hipkins
99/10	Review of the New Zealand Standard for Concrete Structures (NZS 3101) for High Strength and Lightweight Concrete Exposed to Fire	M J Inwood
99111	Simple Empirical Method for Load-Bearing Light Timber Framed Walls at Elevated Temperatures	K H Liew
99/12	An Analytical Model for Vertical Flame Spread on Solids: An Initial Investigation	G A North
99/13	Should Bedroom Doors be Open or Closed While People are Sleeping? - A Probabilistic Risk Assessment	D L Palmer
99/14	Peoples Awareness of Fire	S J Rnsbridge
99/15	Smoke Explosions	B J Sutherland
99116	Reliability of Structural Fire Design	JKS Wong

School of Engineering University of Canterbury Private Bag 4800, Chnstchurch, New Zealand

> Phone 643 364-2250 Fax 643 364-2758

