AUSTRALIAN INSTITUTE OF MARINE SCIENCE

Prof. Steven Hall, Director - s. hall@aims.gov.au

The article Dr. Hall mentioned: Judith L. Anderson. 1998. Embracing uncertainty: The interface of Bayesian statistics and cognitive psychology. Conservation Ecology [online] 2(1): 2. Available from the Internet. URL: <u>http://www.consecol.org/vol2/iss1/</u>

My questions for this visit

- How complementary are NOAA and AIMS?
- Can we add genuine value to each others business?
- If we can, how might an effective strategic alliance be realised?

Objectives

- Introduce AIMS
 - Purpose, Funding, Philosophy, Structure, Current Research Program
- An example of ALMS research in more detail

What is AIMS?

A Commonwealth Statutory Authority with a mission to:

"generate [and transfer] the knowledge to support the sustainable use and protection of the marine environment through innovative, world-class scientific and technological research."

Funding

Government appropriation\$16.7mAsset replacement\$2.7mExternal Revenue~\$4-5m

External Revenue Breakdown Royalties & Licenses \$500K Grants and Contracts \$4-4.5m

155 Staff, 55 PhD Students

Infrastructure

Scope of Operation

Conservation & Biodiversity Julian Caley

Resource surveys for regional marine planning

Sea floor biodiversity

Evolution and biogeography of marine biota

Conservation & Biodiversity

Status and trends on coral reefs

Global coral reef monitoring network

Coral reefs and climate change

Decision support for marine resource managers

Coastal Processes Frank Tirendi

Terrestrial run-off into coastal receiving waters

Transport models for water, sediments and propagules

Biological oceanography of the North West Shelf

Coastal Processes

Biological impacts of excess nutrients in marine ecosystems

Biogeochemistry of estuaries

Bioindicators of sublethal stress in marine organisms

Marine Biotechnology Chris Battershill

Marine environmental biochemistry and chemical ecology

Bioactive molecules from the marine environment

Marine Biotechnology

Population genetics and marine protected areas

Tropical Aquaculture

Biodiscovery Anti-Cancer Compounds

Australian Institute of Marine Science

Lissoclinum lobatum (tunicate)

Some marine natural products presently sold as research tools (Source: Calbiochem)

Compound	Present source F	Retail price (US\$) Per milligram
Bastadin 5	lanthella basta (sponge)	9,040
Bastadin 19	lanthella basta (sponge)	6,870
Bastadin mixture	Ianthella basta (sponge	5,800
Okadaic acid	Halichondria okadai (sponge)	4,070
Manoalide	Luffariella variabilis (sponge)	20,360
Saxitoxin	algae, toxic shellfish, crabs	
3,322	-	
Neosaxitoxin	algae, toxic shellfish,crabs	21,400
Tetrodotoxin	Bacteria (maybe) and puffer	fish 316
Brevetoxin	Dinoflagellates	6,740
Anatoxin	Cyanobacteria	864
AUSTRALIAN INSTITUT OF MARINE SCIENCE	Palythoa toxica (zoanthid) E	14,240

Low-technology aquaculture

An example of AIMS research

Threats are real and must be managed

Reef Futures

• Overarching Purpose:

To synthesise information and develop tools to improve understanding of coral reef systems, predict their future states and inform decision-making for their management.

Structure

- Knowledge Discovery and Data Mining
 Glenn De'ath
- Options analysis
 Scott Wooldridge
 & Terry Done
- Information Management System & GIS
 Stuart Kininmonth
 & Steve Edgar
- Working Groups and Synthesis www.reef.crc.org.au
- Knowledge Exchange
 Vicki Harriott

Options Analysis Scott Wooldridge

Research Objective

"To develop a modelling framework and tools to predict the future state of GBR coral reefs for a range of disturbance and management scenarios" Crown-of-Thorns Starfish

Used for modelling:

Bleaching

- Water Quality
- Crown-thorns-starfish Marine Reserve Design
- Cyclone

Flood Plumes

The Traditional Approach

Deterministic Simulation Modelling

- 1. Attempt to describe and parameterise the functional form of key processes
- 2. Predict future states
- 3. Use predictions to support decision making

BUT

- Often complicated
- Hard to parameterise
- High uncertainty esp with ecological models
- Predictions not well suited for decision making (don't deal with uncertainty well)
 AUSTRALIAN INSTITUTE OF MARINE SCIENCE

The right kind of answer

- "If you do [Management Action] x the probability that [Consequence] y will occur is z%."
- Clear causal reasoning required to make such a statement.
- A framework needed to produce them.

Bayesian Belief Networks

 Describe causal relationships between variables

OF MARINE SCIENCE

Conditional Probability Matrix

- The strength of a link is specified with a conditional probability eg. P(child| parent₁,...., parent_n)
- 🔸 eg Assume 2 possible states (●&)

$$M = \begin{bmatrix} m_1 & 1 - m_1 \\ m_2 & 1 - m_2 \\ m_3 & 1 - m_3 \\ m_4 & 1 - m_4 \end{bmatrix} = \begin{bmatrix} P(C = \bullet | A = \bullet, B = \bullet) & P(C = \bullet | A = \bullet, B = \bullet) \\ P(C = \bullet | A = \bullet, B = \bullet) & P(C = \bullet | A = \bullet, B = \bullet) \\ P(C = \bullet | A = \bullet, B = \bullet) & P(C = \bullet | A = \bullet, B = \bullet) \\ P(C = \bullet | A = \bullet, B = \bullet) & P(C = \bullet | A = \bullet, B = \bullet) \end{bmatrix}$$

C

Allows beliefs in the two states of C to be calculated

With BBN's

- The structure of the network and
- The conditional probability matrix allows
- The likelihood (marginal probability) of each node holding one of its states to be calculated
- 2. Propagation of effects throughout the network if a marginal probability is changed, thereby updating probabilities of variables of interest.

Australian Institute of Marine Science

Bayes' Theorem (for two hypotheses)

H₁: A coral reef will bleach

H₂: A coral reef will not bleach

Data: Variables that give us bleaching potential (high or low)

The probability that Hypothesis 1 is true, given the data

Of the 188 stands with high bleaching potential, the proportion of reefs that actually bleached is 46/188 = 0.245

Coral Bleaching Potential Objective

To predict the likelihood of bleaching under various scenarios

Mixing potential

Thermal stress

Bleaching potential

Coral Bleaching Potential

OF MARINE SCIENCE

An example: Coral Bleaching

An example: Coral Bleaching

Mixing model

Bayesian Belief Ne

ormation

'ks

- Allow different king navigo ormatic to be easily complete analy ormatic Formally strugor galanderstanding Allows infective or ecision making with in capable to risk and the predictive be
- is amenable to risk analysis e scenarios can be tested

Prob(transition) - f(initial state, time since disturbance, 'recovery' conditions)

•Bleaching

- Crown-thorns-starfish
- •Cyclone
- •Flood Plume Australian Institute of Marine Science

- •Water Quality
- •Marine Reserve Design
- ~ Management implications

TRADER (MPA Design Software)

- Statistical models (multivariate trees) + expert knowledge to determine ecoregions
- Smart algorithms based on trees and heuristics (grow, pick and peel) allow selection of a protective areas network
- Interactive tools refine the network through trading
- New tree-based data mining methods are being developed (knowledge discovery and data mining)

Data and knowledge to ecoregionalisation

Ecoregionalisation to a Protected Areas Network

Smart selection methods and software generates the protected areas network

> The network contains targeted amounts of all ecoregions,yet minimises socio-economic costs

AUSTRALIAN INSTITUTE OF MARINE SCIENCE

Trading

 Interactive local modifications to the network by including and excluding regions, and re-evaluating

My questions for this visit

- How complementary are NOAA and AIMS?
- Can we add genuine value to each others business?
- If we can, how might an effective strategic alliance be realised?

