The effect of agricultural nutrient loading on estuarine bacterioplankton communities

Jude Apple Horn Point Laboratory University of Maryland Center for Environmental Science Cambridge, Maryland

What is Microbial Ecology?

- Ecological Processes and Plankton Dynamics
- Paradigm Shifts
 - Cultured vs. Non-cultured Bacterioplankton
 - Dominance of Heterotrophic Processes
- Technological Advances
 - Flow Cytometry
 - Production and Respiration Measurements
 - Molecular Techniques
- Where are we today?
 - Empirical estimates of bacterial respiration
 - Relative contribution among and within systems
 - Diversity

Heterotrophic Bacterioplankton

- Non-pathogenic!
- Small ($\leq 1 \mu m$)
- Abundant (~10⁶ cells/ml)
- Comparable in biomass to PP
- Nutrient & carbon remineralization
- Drive water quality parameters (i.e. anoxia, nutrient availability)
- Source vs. sink?

Cross-System View of Bacterioplankton

Plankton Dynamics of Aquatic Systems

The Microbial Loop

Direct vs Indirect Effects of Nutrient Enrichment

Methods in Microbial Ecology

- Flow Cytometry
- Estimates of Bacterial Metabolism
 - Production
 - Respiration
 - Bacterial Growth Efficiency

Microbial Lab Techniques: Flow Cytometry

Inside the Flow Cytometer

Estimating Microbial Metabolism

1. Bacterial Production (BP)

- 2. Bacterial Respiration (BR)
 - O₂ consumption over time
 - inlet mass spectrometry
- Bacterial Growth Efficiency (BGE)

Estimating Microbial Metabolism

1. Bacterial Production (BP)

- 2. Bacterial Respiration (BR) $\vec{\tilde{O}}_{generation}$
 - O₂ consumption over time
 - inlet mass spectrometry
- Bacterial Growth Efficiency (BGE)

Estimating Microbial Metabolism

1. Bacterial Production (BP)

2. Bacterial Respiration (BR)

- 3. Bacterial Growth Efficiency (BGE)
 - production divided by total carbon consumption

Objectives

"What is the effect of system-level nutrient enrichment on estuarine bacterioplankton communities?"

Today's Talk

- 1. Monie Bay as a natural experiment
- 2. Response of bacterioplankton to nutrient enrichment
- 3. Effect of salinity on mediating this response
- 4. Conclusions and Implications

Objective I: The natural experiment

How do we evaluate the effect of nutrients on

- bacterioplankton?
 Small-scale nutrient enrichment experiments
- Large-scale field studies
- Large-scale enrichments
- Impacted systems function as as "natural experiments"

Study Site: Monie Bay Research Reserve

Monie Bay (OB)

MONIE CREEK (MC)

LITTLE CREEK (LC)

LITTLE MONIE CREEK (LM)

Tidal Creek Nutrient Concentrations

Π

Does the bacterioplankton community respond to nutrient enrichment?

LM vs. LC

Bacterioplankton Response to Enrichment

Bacterial Growth Efficiency

Single-Cell Activity in Response to Enrichment

III

Does salinity mediate the response to nutrient enrichment?

LM vs. MC

Community Response to Nutrient Enrichment

• There is a muted response to enrichment in Monie Creek

Single-Cell Response to Enrichment

• The proportion of highly-active cells is higher in Monie Creek, suggesting compositional differences in the assemblages

What mediates the response to nutrients?

- Shifts in phylogenetic composition?
- DOM quality?
 - Transplant Experiment
 - Optical Characteristics of DOM
 - DOM Lability

Transplant Experiment

- 1. Collect water, filter, and fill dialysis bags
- 2. Transplant dialysis bags
- 3. Transplant control bags
- 4. Harvest bags daily
- 5. Measure BA, BP, and single-cell activity

Optical Characteristics of DOM

Are there differences in substrate quality, as evidenced by CDOM?

- 1. CDOM is an index of refractory, terrestrially derived organic matter
- 2. Absorption (A) spectra from 290-500nm

CDOM and DOM Quality?

• Monie Creek is enriched with DOC and CDOM

DOM Lability Experiment

- 1. Collect water
- 2. $0.2\mu m$ filter 2L
- 3. Inoculate with resident bacterioplankton
- 4. Incubate for 4 weeks
- 5. Measure DOC

DOM Lability Experiment: Results

• Calculate ΔDOC in $\mu gC L^{-1} day^{-1}$ (i.e. lability) and percent labile.

Conclusions

- I. Monie Bay as a **Natural Experiment**
- II. Effect of nutrient enrichment?
 - Positive Response on Community and Cellular levels.
- III. Effect of Salinity?
 - Freshwater systems have lower DOM Quality
- **IV**. Relevance and Implications?
 - Source and Sink
 - Indices of Eutrophication and Management implications
 - Monie Bay is a Model Estuarine System

