# **Feature Detection**

12 February 2003

John W. Betz, PhD 781 271 8755 betz@mitre.org



### What Is Feature Detection?

Most transmitted radio frequency (RF) signals exhibit structure, or "features"

One class of features is known rates in the signal
 Carrier frequency
 Keying

- Signal presence can be determined through detection of these features
  - More sensitive than demodulation in some cases
  - Better discrimination and more robustness than energy detection in some cases



### **Presentation Objectives**

### Presentation attempts to:

- Provide background on cyclostationarity
- Describe cyclostationary feature detectors
- Describe performance of cyclostationary feature detectors for some classes of modulations

### Presentation does NOT intend to:

- Design or analyze feature detectors for specific modulations used in digital television
- Address overall aspects of listen-before-talk protocols
- Assess the utility of cyclostationary feature detection in listenbefore-talk protocols



### **Spectrum of M-ary PSK Signal, 2.5 M symbol/s**





### **Spectrum of Noise Only and** 2.5 M symbol M-ary PSK Signal in Noise



Input SNR (Energy Per Bit)/(Noise Density) is –10 dB



### **Spectrum of Feature Detector Outputs: Noise Only** and 2.5 M symbol M-ary PSK Signal in Noise



![](_page_5_Picture_3.jpeg)

### **Feature Detection**

Cyclostationary Processes
 Cyclostationary Feature Detection

 Processing Structures
 Performance

 Practical Considerations

Summary

![](_page_6_Picture_4.jpeg)

### **Mathematical Models of Communications Waveforms**

Narrowband signal

$$x(t) = x_{\rm r}(t)\cos(2\pi f_{\rm c}t) - x_{\rm i}(t)\sin(2\pi f_{\rm c}t)$$

Complex envelope representation

$$x(t) = \Re\{y(t)\}$$
$$y(t) = z(t)e^{i2\pi f_{c}t}$$

■ y(t) and z(t) are complex-valued

![](_page_7_Picture_6.jpeg)

![](_page_7_Picture_7.jpeg)

![](_page_7_Picture_8.jpeg)

### **Stationary Processes**

- Much of communications and signal processing relies on modeling noise and signals as a special class of stochastic processes known as stationary processes
  - Statistics do not vary over time
- Many practical applications in signal processing involve first-order and second-order moments of stationary processes
  - Mean  $m = E\{z(t)\}$ Variance  $\sigma^2 = E\{z(t)z^*(t)\}$
  - Correlation functions

$$R^{1}(\tau) = E\left\{z(t)z^{*}(t-\tau)\right\}$$
$$R^{0}(\tau) = E\left\{z(t)z(t-\tau)\right\}$$

Power spectral density

$$G^1(f) = \mathbf{F}_{\tau} \left\{ R^1(\tau) \right\}$$

Ergodicity (equivalence of time averages and ensemble averages) can be important is assumed
©2003 The MITRE Corporation

![](_page_8_Picture_10.jpeg)

### **Second-Order Moments for Zero-Mean Wide-Sense** Stationary Process

- Like all moments, the correlation function and power spectral density are deterministic functions that (incompletely) describe a stochastic process
  - There exists an infinite number of stochastic processes that have the same correlation function and power spectral density

![](_page_9_Figure_3.jpeg)

![](_page_9_Picture_5.jpeg)

1(

### Second-Order Moments for Zero-Mean Wide-Sense Stationary Process (Concluded)

![](_page_10_Figure_1.jpeg)

## **Cyclostationary Processes**

- Model of actual data as stationary becomes limited as statistics vary over time
- Statistics of some time series vary periodically over time cyclostationary processes
  - First-order and second-order moments of cyclostationary processes  $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ 
    - Mean  $m(t) = E\{z(t)\} = \sum_{k=-\infty}^{\infty} \mu_k e^{i2\pi k\beta t}$ ■ Variance  $\sigma^2(t) = E\{z(t)z^*(t)\} = \sum_{k=-\infty}^{\infty} \chi_k e^{i2\pi k\alpha t}$ ■ Cyclic correlation functions

$$R^{1}(t,\tau) = E\left\{z(t)z^{*}(t-\tau)\right\} = \sum_{k=-\infty}^{\infty} \chi_{k}^{1}(\tau)e^{i2\pi k\alpha^{1}t}$$
$$R^{0}(t,\tau) = E\left\{z(t)z(t-\tau)\right\} = \sum_{k=-\infty}^{\infty} \chi_{k}^{0}(\tau)e^{i2\pi k\alpha^{0}t}$$

Cyclic power spectral densities

$$G^{1}(\phi, f) = F_{t,\tau} \left\{ R^{1}(t,\tau) \right\} = \sum_{k=-\infty}^{\infty} X^{1}_{k}(f) \delta(\phi - k\alpha)$$
  

$$G^{0}(\phi, f) = F_{t,\tau} \left\{ R^{0}(t,\tau) \right\} = \sum_{k=-\infty}^{\infty} X^{0}_{k}(f) \delta(\phi - k\alpha)$$
  
WITRE Corporation

![](_page_11_Picture_10.jpeg)

### **Second-Order Statistics of Cyclostationary Processes**

![](_page_12_Figure_1.jpeg)

### **Time-Averaged Second-Order Statistics of** Cyclostationary Process

![](_page_13_Figure_1.jpeg)

## **Applications of Cyclostationarity**

- Filtering: estimation of signals from noise and interference
- Prediction
- Parameter estimation
- System identification
- Equalization
- Detection

![](_page_14_Picture_8.jpeg)

### **Feature Detection Outline**

**Cyclostationary Processes Cyclostationary Feature Detection** Processing Structures Performance **Practical Considerations** 

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_4.jpeg)

### **Fundamental Detection Problem**

- Decide between two hypotheses
  - Null hypothesis: only Gaussian noise
  - Alternative hypothesis: Gaussian cyclostationary signal in Gaussian noise
- A priori knowledge:
  - Power spectrum of noise, including total power
  - Second-order cyclostationary statistics of signal
    - Can accommodate unknown timing (phasing of periodicities in statistics)
- Optimal test statistic is sum of two terms
  - Energy detector based on stationary statistics
  - **Cycle frequency detector** 
    - Detects periodicities at all delays in the sample cyclic correlation functions
    - Detects peaks in the sample cyclic spectral density

![](_page_16_Picture_14.jpeg)

### **Detection with Noise Power Uncertainty**

### Decide between two hypotheses

- Null hypothesis: only Gaussian noise
- Alternative hypothesis: Gaussian cyclostationary signal in Gaussian noise
- A priori knowledge:
  - Power spectrum of noise: shape known but not total power not known precisely
  - Second-order cyclostationary statistics of signal, except for timing (phase of periodicities in statistics)
- Optimal test statistic is merely:
  - Cycle frequency detector that detects periodicities at all delays in the sample cyclic correlation function

![](_page_17_Picture_10.jpeg)

### **Simpler Cycle Frequency Detector:** "Cyclostationary Feature Detector"

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_3.jpeg)

### **Simpler Cycle Frequency Detector:** "Cyclostationary Feature Detector" (Concluded)

![](_page_19_Figure_1.jpeg)

©2003 The MITRE Corporation

![](_page_19_Picture_3.jpeg)

20

## **Canonical Structure for Feature Detector**

![](_page_20_Figure_1.jpeg)

- Joint optimization to maximize output signal-to-noise ratio (SNR)
  - Input filter shapes signal and noise
  - Delay
- Narrowband detector isolates energy at selected cycle frequency
  - Narrowband filter with energy detector
  - Filter bank (FFT) searches multiple frequencies in parallel
  - Can use a combination of coherent and noncoherent integration

Input Filter Is Critical

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_11.jpeg)

21

### **BPSK with Random Data, Null-to-Null Filtered**

![](_page_21_Figure_1.jpeg)

### 8-PAM with Random Data and No Trellis Coding, Null-to-Null Filtered

![](_page_22_Figure_1.jpeg)

### 8-PAM with Random Data and No Trellis Coding, Delay Instead of Filtering

![](_page_23_Figure_1.jpeg)

### **Spectrum of M-ary PSK Signal, 2.5 M symbol/s**

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_3.jpeg)

### **Spectrum of Noise Only and M-ary PSK Signal in Noise**

![](_page_25_Figure_1.jpeg)

Input SNR (Energy Per Symbol)/(Noise Density) is –10 dB

![](_page_25_Picture_4.jpeg)

### **Spectrum of M-ary PSK Signal after Input Filter**

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_3.jpeg)

### **Spectrum of Noise Only and M-ary PSK Signal in** Noise after Input Filter

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_3.jpeg)

## **Spectrum of Filtered M-ary PSK Signal after** Squaring

![](_page_28_Figure_1.jpeg)

### **Spectrum of Filtered Noise Only and M-ary PSK** Signal in Noise After Squaring

![](_page_29_Figure_1.jpeg)

32768 symbols processed coherently, 3 noncoherent integrations

![](_page_29_Picture_4.jpeg)

## **Spectrum of M-ary PSK Signal in Noise after Squaring**

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_3.jpeg)

### **Feature Detector Design Process**

- Using mathematical model of waveform, derive expression for cyclic correlation function
  - Account for modulation, filtering and equalization, statistics of data sequence
  - Example for bandlimited M-ary PSK with rectangular symbols and random data

$$z(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT_s)$$

$$R^1(t,\tau) = E\left\{z(t)z^*(t-\tau)\right\} = \sum_{k=-\infty}^{\infty} \chi_k^1(\tau)e^{i2\pi k\alpha^1 t}$$

$$\alpha^1 = \frac{1}{T_s}$$

$$\chi_k^1(\tau) = e^{-i\pi k} \int_{-B/2}^{B/2} \operatorname{sinc}[\pi fT_s]\operatorname{sinc}[\pi(fT_s + k)]e^{i2\pi f\tau} df$$

![](_page_31_Picture_6.jpeg)

### **Feature Detector Design Process (Concluded)**

- Identify and select cycle frequency to detect
  - **Can repeat for different cycle frequencies**
- Derive expression for output SNR after narrowband detector at selected cycle frequency, in terms of input filter and delay
- Optimal detector:
  - Input filter found from application of generalized Schwartz Inequality
  - Any delay is incorporated in transfer function of optimal input filter
- Suboptimal detector uses input filter with rectangular passband
  - Numerical search finds bandwidth and delay that jointly maximize output SNR
- Select coherent and noncoherent integration times
  - Determine relationships between input SNR, output SNR, and integration times
- Evaluate operating characteristics: detection and false alarm probabilities

![](_page_32_Picture_13.jpeg)

### **General Expression for Output SNR for Detection in** White Noise Using Coherent Narrowband Detector

$$\rho_o = \gamma N_s \rho_i^2$$

### $\rho_o$ is output SNR

- Y is a "processing coefficient" that depends on modulation type, choice of cycle frequency, selection of input filter and delay
- $\blacksquare$   $N_s$  is the number of cycle periods observed
- $\rho_i$  is the input SNR: (signal energy over cycle period)/(noise density)

### Expression applies for small input SNR

![](_page_33_Picture_8.jpeg)

### **Processing Coefficients for M-ary PSK Symbol** Rate, Rectangular Symbols, Random Values

Detection of symbol rate 1 / T<sub>s</sub> in R<sup>1</sup>(t, τ), where T<sub>s</sub> is symbol period
 For optimal input filter

$$\gamma = \int_{-\infty}^{\infty} \operatorname{sinc}^{2}(\pi f) \operatorname{sinc}^{2}(\pi (f-1)) df \approx 0.10$$
For rectangular input filter
$$\frac{\operatorname{Magnitude}}{\operatorname{Function}}$$

$$\frac{\operatorname{Magnitude}}{\operatorname{Function}}$$

$$\frac{\operatorname{Magnitude}}{\operatorname{Function}}$$

$$\frac{\operatorname{Function}}{\operatorname{Function}}$$

## **M-ary PSK Processing Coefficients for Symbol Rate**

- Signal uses binary phase shift keying with rectangular symbols modulated by random (independent, equally likely) values
  - Processing coefficient with optimal input filter is –10 dB
  - Maximum processing coefficient with rectangular input filter is -11.5 dB
    - Input filter bandwidth is ~1.7 times reciprocal of symbol period
    - Delay is zero

![](_page_35_Figure_6.jpeg)

Input Bandwidth Times Symbol Period

![](_page_35_Picture_10.jpeg)

### **M-ary PSK Symbol Rate Detection Output SNR**

![](_page_36_Figure_1.jpeg)

Input SNR (dB)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

### **M-ary PSK Detection Performance, False Alarm Probability 10<sup>-6</sup>**

When narrowband detector uses only coherent processing, resulting test statistic has Rayleigh/Rician distribution

![](_page_37_Figure_2.jpeg)

![](_page_37_Picture_4.jpeg)

38

### **M-ary PSK Detection Performance, False Alarm** Probability 10<sup>-8</sup>

![](_page_38_Figure_1.jpeg)

©2003 The MITRE Corporation

![](_page_38_Picture_3.jpeg)

39

### **Relationship between Input SNR and** Integration Time

![](_page_39_Figure_1.jpeg)

MITRE

## **Example Calculation of Detection Sensitivity**

- M-ary PSK signal with symbol rate 10.79 MHz
- Produce 12 dB output SNR
  - Corresponds to detection probability near 0.9 with false alarm probability less than 0.1 over 1000 FFT bins
- Assume 5 dB implementation loss
- Coherent Integration time
   Minimum Input SNR
   0.1 ms
   -1.7 dB\*
   -6.7 dB\*
   10 ms
   -11.7 dB
   -10.7 dB

### \*Must confirm assumption of low input SNR

![](_page_40_Picture_8.jpeg)

## **Assumption of Small Input SNR**

- As input SNR becomes larger and approaches 0 dB, actual output SNR is less than predicted by expressions that assume small input SNR
- Plot below shows ratio of actual output SNR to output SNR predicted under assumption of small input SNR

![](_page_41_Figure_3.jpeg)

![](_page_41_Picture_6.jpeg)

### **Feature Detection**

Cyclostationary Processes
 Cyclostationary Feature Detection

 Processing Structures
 Performance
 Practical Considerations
 Summary

![](_page_42_Picture_3.jpeg)

43

## Why Use Feature Detection Over Radiometry?

- Radiometric detectors not very robust in detecting weak signals
  - Sensitive to uncertainty in the power of background noise
  - Sensitive to interference, and limited in ability to discriminate against it

![](_page_43_Picture_5.jpeg)

### **Spectrum of Filtered Noise Only and M-ary PSK** Signal in Noise After Squaring

![](_page_44_Figure_1.jpeg)

32768 symbols processed coherently, 3 noncoherent integrations
 Equivalent to processing 40 mseconds of data

![](_page_44_Picture_4.jpeg)

### **Issues to Consider in Cyclostationary Feature Detection**

- Implementation complexity
  - Analog hardware versus digital hardware versus DSP
  - Storage
- Signal characteristics
  - Excess bandwidth needed to produce cyclostationarity
  - Filtering
  - Equalization
- High sensitivity requires long integration times
  - Practical issues
  - Use of coherent/noncoherent integration times
- Channel effects
  - Coherence bandwidth
  - Coherence time
- Interference
- Frequency uncertainty
- Antennas

©2003 The MITRE Corporation

![](_page_45_Picture_18.jpeg)

46

### **Feature Detection**

Cyclostationary Processes
 Cyclostationary Feature Detection

 Processing Structures
 Performance

 Practical Considerations
 Summary

![](_page_46_Picture_3.jpeg)

![](_page_47_Picture_0.jpeg)

- Feature detection enables determining signal presence without demodulation
- Keyed signals can be represented as cyclostationary processes
- Cyclostationary feature detectors can detect with SNRs below 0 dB
  - Square-law relationship between integration time and input SNR at low input SNRs
  - Trade sensitivity for integration time
- Cyclostationary feature detector design methodology well-known
- Cyclostationary feature detector performance prediction well-known
- Applicability of cyclostationary feature detectors to listen-before-talk protocols involves many system-level trades
  - Practical issues in cyclostationary feature detection
  - Alternative detectors
  - Propagation

![](_page_47_Picture_13.jpeg)

- William A. Gardner and L. E. Franks, "Characterization of cyclostationary random signal processes", IEEE Transactions on Information Theory, Vol. IT-21, No. 1, pp. 4-14, January 1975.
- William A. Gardner, "The spectral correlation theory of cyclostationary timeseries", Signal Processing, Vol. 11, pp. 13-36, 1986.
- K. Abed-Meraim, W. Z. Qui, and Y. B. Hua, "Blind system identification", Proceedings of the IEEE, Vol. 85, No. 8, pp. 1310-1322, August 1997.
- Q. Wu and K. M. Wong, "Blind adaptive beamforming for cyclostationary signals", IEEE Transactions on Signal Processing, Vol. 44, No. 11, pp. 2757-2767, November 1996.
- L. Castedo and A. R. Figueiras-Videl, "An adaptive beamforming technique based on cyclostationary signal properties", IEEE Transactions on Signal Processing, Vol. 43, No. 7, pp. 1637-1650, July 1995.
- G. Xu and T. Kailath, "Direction-of-arrival estimation via exploitation of cyclostationarity - a combination of temporal and spatial processing", IEEE Transaction on Signal Processing, Vol. 40, No. 7, pp. 1775-1786, July 1992.

![](_page_48_Picture_8.jpeg)

## **Selected References (Continued)**

- Brent R. Petersen and David D. Falconer, "Minimum mean square equalization in cyclostationary and stationary interference - analysis and subscriber line calculations", IEEE Journal on Selected Areas in Communications, Vol. 9, No. 6, pp. 931-940, August 1991.
- William A. Gardner, "Rice's representation for cyclostationary processes", IEEE Transactions on Communications, Vol. COM-35, No. 1, pp. 74-78, January 1987.
- William A. Gardner, Statistical Spectral Analysis, Prentice Hall, 1988.
- William A. Gardner, "Spectral correlation of modulated signal: Part I -Analog modulation", IEEE Transaction on Communications, Vol. COM-35, No. 6, pp. 584-594, June 1987.
- William A. Gardner, "Exploitation of spectral redundancy in cyclostationary signals", IEEE Signal Processing Magazine, pp. 14-36, April 1991.
- William A. Gardner and G. K. Yeung, "Search-efficient methods of detection of cyclostationary signals", IEEE Transactions on Signal Processing, Vol. 44, No. 5, pp. 1214-1223, May 1996.

![](_page_49_Picture_8.jpeg)

### **Selected References (Concluded)**

- Zhi Ding, "Characteristics of band-limited channels unidentifiable from second-order cyclostationary statistics", IEEE Signal Processing Letters, Vol. 3, pp. 150-152, May 1996.
- William A. Gardner (Ed.), Cyclostationarity in Communications and Signal Processing, IEEE Press, 1994.

![](_page_50_Picture_4.jpeg)