Skip To Content
NSF Logo Search GraphicGuide To Programs GraphicImage Library GraphicSite Map GraphicHelp GraphicPrivacy Policy Graphic
OLPA Header Graphic
 
     
 

NSF Press Release

 


Embargoed Until: 2 p.m. Eastern
NSF PR 03-30 - March 23, 2003

Media contact:

 David Hart

 (703) 292-8070

 dhart@nsf.gov

Program contact:

 George A. Hazelrigg

 (703) 292-7068

 ghazelri@nsf.gov

New Technique Fabricates "Plumbing" for Microfluid Factories

3-D microvascular network embedded
A sample of the 3-D microvascular network embedded in epoxy.
Credit: University of Illinois, Urbana-Champaign
Select image for larger version
(Size: 487KB)

3-D microvascular network
Fluorescent microscope image of a 3-D microvascular network of cylindrical microchannels filled with a fluorescent dye. The scale bar is 0.25 mm.
Credit: University of Illinois, Urbana-Champaign
Select image for larger version
(Size: 153KB)

Larger versions (Total Size: 640KB) of all images from this document

 Note About Images

ARLINGTON, Va. – Researchers at the University of Illinois at Urbana-Champaign have devised a new method for fabricating three-dimensional "plumbing" for fluids in millimeter-sized devices, using a robotic pen to draw the pipes with specialized ink. They have used the plumbing to build a mixing factory for microscopic fluid streams, and future applications may include uses in sensors, labs-on-chips and self-repairing materials.

"Our approach opens up new avenues for device design that are currently inaccessible by conventional methods," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at Illinois. The Illinois team reports its findings in the April 2003 Nature Materials. The research is supported by the Air Force Office of Scientific Research and the National Science Foundation, the independent federal agency that supports basic research in all fields of science and engineering.

The plumbing, built out of 3-D networks of microchannels that can range from 10 microns to 300 microns (millionths of a meter) in diameter, represents several advances over conventional, 2-D networks that are etched into a flat wafer, for example. Because pipes are stacked on top of one another in the 3-D plumbing, it occupies a much smaller footprint than 2-D channels of comparable length. At the same time, the Illinois team's 3-D networks are much more effective at mixing fluids than the best 2-D alternatives. "Fluid mixing is critical” for many microfluid applications, Lewis said.

The networks of microchannels may also provide "an analog to the human circulatory system for the next generation of self-healing materials," said Scott White, a professor of aeronautical and astronautical engineering and a researcher at the Beckman Institute for Advanced Science and Technology. "The embedded network would serve as a circulatory system for transporting repair chemicals to damage sites within the material."

To create the microchannel networks, Lewis, White, and graduate student Daniel Therriault utilize a computer-controlled robotic "pen." The pen's nozzle deposits a line of waxy ink from which a three-dimensional scaffold is constructed.

"The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern," Lewis said. "After a layer is generated, the stage is raised and rotated, and another layer is deposited. The process is repeated until the desired structure is produced." The waxy ink retains its cylindrical shape, even as it crosses gaps in the level of the scaffold below it.

Next, the scaffold is surrounded with an epoxy resin. After the resin solidifies, the material is heated, and the waxy ink melts away and leaves behind an empty network of crisscrossed pipes and joints.

In the final step, the pipes are flooded with a resin that hardens under exposure to ultraviolet light. The material is selectively exposed to UV rays, sealing off channels to create the desired plumbing pathways. The relatively simple technique permits the Illinois team to construct plumbing with regular geometries, such as square-spiral towers that stair-step their way up through the scaffolding.

The researchers built these square-spiral towers for mixing microfluid streams to demonstrate the effectiveness of their fabrication technique. Each of the integrated tower arrays was made from a 16-layer scaffold. The mixing efficiency of these stair-cased towers was measured by monitoring the mixing of two dyed fluid streams using fluorescent microscopy.

"These three-dimensional towers dramatically improve fluid mixing compared to simple one- and two-dimensional channels," White said. "By forcing the fluids to make right-angle turns as they wind their way up the tower, the fluid interface is made to fold on top of itself repeatedly. This causes the fluids to become well-mixed in a short distance."

The Illinois researchers are considering more sophisticated techniques for creating arbitrary 3-D plumbing structures in the final step. "That would just open up a huge window for what we could do in the future in 3-D," Lewis said. "Full-fledged 'factories-on-a-chip' for any of the long-term applications envisioned may require these more complex structures."

-NSF-

Colloidal Processing Research Lab: http://colloids.mse.uiuc.edu/
Autonomic Materials Lab: http://www.autonomic.uiuc.edu

Principal Investigators: Jennifer A. Lewis, UIUC, 217-244-4973, jalewis@uiuc.edu
Scott R. White, UIUC, (217) 333-1077, swhite@uiuc.edu

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful Web Sites:
NSF Home Page: http://www.nsf.gov
News Highlights: http://www.nsf.gov/home/news.html
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

 

 
 
     
 

 
National Science Foundation
Office of Legislative and Public Affairs
4201 Wilson Boulevard
Arlington, Virginia 22230, USA
Tel: 703-292-8070
FIRS: 800-877-8339 | TDD: 703-292-5090
 

NSF Logo Graphic