																						1
					1					1	1											
		Reasonable	Potential fo	the discha	rge to cause	or contribu	e to an exc	eedance of t	he chronic o	riterion for	ead was de	nonstrated	during Octo	her - March	at West Bo	SP.						
+						ne chronic c		doddinoc or t	cino omi omo c	7 1101 1011 101	rodd was do	nonstratoa,	du ing ooto	DOI WIGHTON	at West Bo			1	1	1		1
		Lilli to fieed	to be calcul	ateu ioi iea	u based on t	le cili onic c	rterion.				ļ											
alculating Limits																						
. Calculate WLA		WLAc)						v = Qu + Qe														
. Calculate LTAa	and LTAc					Cd = aquat	ic life crite	ria that car	not be exc	eeded downs	tream, ug/L			This value	must be con	verted back	to total re	coverable us	ing a trans	lator. Cd to	ot = Cd/tra	nslato
. Determine the	limiting LTA	[i.e., min	LTAa and L	TAc)]		Qe = efflu	ent flow, o	efs														
. Use LTA to cal	culate AML	and MDL				Ce = conce	ntration of	pollutant in	effluent =	WLAa or V	LAc. ua/L			This value	vill be calcu	lated as to	al recovera	ble.				
					1	Qu = upstr					, ,											1
+				1	1			dund concen	tration of	ollutant uc	VI.		1					1	1	1		1
					ļ	MF = fract			iti ation or j	obilutant, ug	1-											<u> </u>
						IVIF = Tract	ion mixing	allowed														
/LA = ((Cd*Qu*N	/IF)+Cd*Qe)	/Qe - (Qu*	MF*Cu/Qe)																			
ΓAa = WLAa*e(0).5*sig^2 -	z*sig)			1	$sig^2 = ln(0)$			1		1											
								probability														
								riation = st		ation/mean												
				i	İ			1	1	İ	İ								i			
TAc = WLAc*e(0	.5*sia^2 -	z*sia)		l	l .	sig^2 = In((CV^2/4) +	1)	1	1	l .		l					1	l	1		1
0(0	J.g = -	- 3.9/		l	1			probability	hasis	1	1							1	l	1		-
					ļ			riation = st		ation/moon	ļ											<u> </u>
					ļ	CV = coeff	cient or va	illation = St	andard devi	a tion/mean												
IDL = LTA*e(z*s	g-0.5*sig^2)	= Maximun	Daily Limit	t	$sig^2 = ln(0)$																
								probability														
						CV = coeff	cient of va	riation = st	andard devi	ation/mean												
ML = LTA*e(z*s	a-0.5*sia^2)	= Average	Monthly Lin	mit	sig^2 = In((CV^2/n) +	1)			1											1
	gg -		-		F			probability	hasis	1	1											
					1			g events req		onth - 4	1							 		 		-
						II = Hulliber	or samping	g events req	un eu per m	UIILII = 4												-
		October - M	arch											Determine								
		October - IVI	iicii																			
														Limiting								
			Calculate W	T.A							Calculate I.	TAa & LTA		LTA	Calculate M	IDI.		Calculate A	MI.			
				<u> </u>	1	1	-	 	1	1	- and and D		1			F	MDL		F	AML		1
			0.	0.1	 	1	0	1	1	1	 	1	ļ	N 411	1	1		1	 			
				Cd	l		Cu	ļ	l	ļ	l		l. <u> </u>	Minimum			ug/L		l	ug/L		<u> </u>
			MF	total rec.	Cd*Qu	Cd*Qe	total rec.	Is Cu > Cd	Cu*Qu	WLA	Sig^2	Sigma	LTA	LTA	Sig^2	Sigma	Tot. Rec.	Sig^2	Sigma	Tot. Rec.		<u> </u>
																						<u></u>
Q10, cfs	69.1	acute	17.275	137.833333	2381.07083	5113.61667	1	0 No	-	202.01314	0.69314718	0.83255461	41.1977775	i								
Qu) 7Q10, cfs	74.8	chronic			99.1518657			0 No		7.9747958	0.22314355	0.47238073	2.97159918									
e, cfs	37.1				1						1				0.69314718	0.83255461	14.6	0.22314355	0.47238073	5.78		
=	0.25				1	 		1	1	†	l					2.00200401	17.0		2200070	3.70		
anslator	0.804			l	1	1	-	1	1	1	1	-	l	-	-	-	-	1	l	1		1
	0.804			 	 	1		1	1	1	 	1	ļ	1	1	1	1	1	 	1		
u, ug/L (TR)	110.5:5			 	 	1	-	1	1	1	 	1	 	1	1	1	1	!	 	1		<u> </u>
MC, ug/L (diss)	110.818				ļ			1	1		ļ							ļ				<u> </u>
CC, ug/L (diss)	4.263								1													
	1				1				1		1											
									1	1				I								
V	2.326																					
99	2.326																					
99 95	2.326 1.645																					