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Quantum phase engineering is demonstrated with two techniques that allow
the spatial phase distribution of a Bose-Einstein condensate (BEC) to be written
and read out. A quantum state was designed and produced by optically im-
printing a phase pattern onto a BEC of sodium atoms, and matter-wave in-
terferometry with spatially resolved imaging was used to analyze the resultant
phase distribution. An appropriate phase imprint created solitons, the first
experimental realization of this nonlinear phenomenon in a BEC. The subse-
quent evolution of these excitations was investigated both experimentally and
theoretically.

Ultimate control over a physical system can
be achieved by precisely manipulating its
quantum mechanical wave function, which
fully characterizes its state. A BEC of a dilute
gas (1) is particularly well suited for such
manipulations because of its directly observ-
able wave function: It has many identical
atoms in the same quantum state, and it is
large enough to be optically imaged.

We demonstrate two optical techniques to
prepare and measure the phase of a BEC
wave function. A chosen pattern of laser light

imaged onto a condensate shapes its phase
almost arbitrarily in two dimensions (2–4).
Matter-wave interferometry (5) using optical-
ly induced Bragg diffraction (6, 7) is then
used to analyze the spatial phase distribution
by direct imaging (8). These methods are
applied in experimental studies of a phenom-
enon in nonlinear atom optics (9), the prop-
agation of solitons [solitary waves (10)] in a
BEC. Three-dimensional (3D) numerical cal-
culations agree well with and substantiate the
experimental observations of soliton genera-
tion and propagation. Both reveal the rich
dynamics of this nonlinear system, such as
the formation of multiple solitons.

Theoretical background. Solitons are
stable, localized waves that propagate in a
nonlinear medium without spreading. They
appear in diverse contexts of science and
engineering, such as the dynamics of waves
in shallow water (11), transport along DNA
and other macromolecules (12), and fiber
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optic communications (13). Solitons may be
either bright or dark, depending on the details
of the governing nonlinear wave equation. A
bright soliton is a peak in the amplitude; a
dark soliton is a notch with a characteristic
phase step across it.

A weakly interacting BEC obeys a non-
linear wave equation that supports solitons,
as shown by recent theoretical studies (14–
17). At zero temperature, this wave equation
is known as the Gross-Pitaevskii equation
(18),

i\(]/]t)c 5 [2(\2/2M )¹2 1 V 1 gc2]c
(1)

where c is the condensate wave function
normalized to the number of atoms, V is the
trapping potential, M is the atomic mass, \ is
the Planck constant divided by 2p and g
describes the strength of the atom-atom inter-
action (19). Solitons propagate without
spreading (dispersing) because the nonlinear-
ity balances the dispersion; for Eq. 1, the
corresponding terms are the nonlinear inter-
action gc2 and the kinetic energy – (\2/
2M)¹2, respectively. Our sodium condensate
only supports dark solitons because the atom-
atom interactions are repulsive (g . 0).

A distinguishing characteristic of a dark
soliton is that its speed is less than the Bogo-
liubov speed of sound, y0 5 (gn/M)1/2 (18,
20), where n 5 c02 is the unperturbed
condensate density. The soliton speed ys can
be expressed in terms of either the phase step
d (0 , d # p) or the soliton “depth” nd,
which is the difference between n and the
density at the bottom of the notch (14, 15):

ys/y0 5 cos(d/2) 5 [1 2 (nd/n)]1/2 (2)

For d 5 p, the soliton has zero velocity, zero

density at its center, a width on the order of
the healing length j 5 (2nMg/\2)–1/2 (15),
and a discontinuous phase step. As d decreas-
es, the speed increases and approaches the
speed of sound. The solitons become shal-
lower and wider and have a more gradual
phase step (15). They travel opposite to the
direction of the phase gradient. Because a
soliton has a characteristic phase step, opti-
cally imprinting a phase step on the BEC
wave function should be a way to create a
soliton.

Phase imprinting. We performed our ex-
periments with a condensate having ;2 3
106 sodium atoms in the 3S1/2, F 5 1, mF 5
21 state, with no discernible thermal fraction
(7). The condensate was held in a magnetic
trap with trapping frequencies vx 5 =2vy 5
2vz 5 2p 3 28 Hz. The Thomas-Fermi
diameters (18) were 45, 64, and 90 mm,
respectively. Initially the BEC, described by
the ground-state solution of Eq. 1, had a
uniform phase (21, 22).

We modified the phase distribution of the
BEC by exposing it to pulsed, off-resonant laser
light with an intensity pattern I(x, y) (Fig. 1). In
this process, the atoms experience a spatially
varying light-shift potential U(x, y) 5 (\G2/
8D)[I(x, y)/I0] and acquire a corresponding
phase f(x, y) 5 –U(x, y)T/\. Here G is the
transition line width, I0 is the saturation inten-
sity, D is the detuning of the laser from the
atomic resonance, and T is the laser pulse du-
ration (23). We chose T to be short enough so
that the atomic motion was negligible during
the pulse (Raman-Nath regime). In this limit,
the effect of the pulse can be expressed as a
sudden phase imprint, which modifies the ini-
tial wave function: c3 c exp[if(x, y)] (24).

Interferometry. We measured the imprint-

ed phase distribution of the condensate wave
function with a Mach-Zehnder matter-wave in-
terferometer that makes use of optically in-
duced Bragg diffraction (25, 26). Our Bragg
interferometer differs from previous ones in
that we can independently manipulate atoms in
the two arms (because of their large separation)
and can resolve the output ports to reveal the
spatial distribution of the condensate phase. In
our interferometer, a Bragg pulse splits the
initial condensate into two states, uA& and uB&,
differing only in their momenta (Fig. 2). After
they spatially separate, the phase step (Fig. 1A)
is imprinted on uA&, while uB& is unaffected and
serves as a phase reference. When recombined,
they interfere according to their local phase
difference. Where this phase difference is 0,
atoms appear in port 1, and where it is p atoms
appear in port 2. Imaging the density distribu-
tions of ports 1 and 2 displays the spatially
varying phase (27). The image in Fig. 2 shows
the output of the interferometer when a phase of
p was imprinted on the upper half of uA& (28).
The high-contrast “half moons” are direct evi-
dence that we can control the condensate spatial
phase distribution and, in particular, imprint the
phase step appropriate for a soliton (29).

Soliton propagation. To observe soliton
propagation, we did not use interferometry
(30) but instead measured BEC density dis-
tributions with absorption imaging (1, 27)
after imprinting a phase step (31). Figure 3, A
to E, shows the evolution of the condensate
after the top half was phase-imprinted with
f0 ' 1.5p, a phase for which we observed a
single deep soliton (the reason for imprinting
a phase step larger than p is discussed be-
low). Immediately after the phase imprint,
there is a steep phase gradient across the
middle of the condensate such that this por-
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Fig. 1. (A) Writing a phase step onto the con-
densate. A far-detuned uniform light pulse
projects a mask (a razor blade) onto the con-
densate. Because of the light shift, this imprints
a phase distribution that is proportional to the
light intensity distribution. A lens (not shown)
is used to image the razor blade onto the
condensate. The mask in (B) writes a phase
stripe onto the condensate. The mask in (C)
imprints an azimuthally varying phase pattern
that can be used to create vortices.

Fig. 2. Space-time diagram of the matter-wave interferometer used to measure the spatial phase
distribution imprinted on the BEC. Three optically induced Bragg diffraction pulses (7 ) formed the
interferometer. Each pulse consisted of two counterpropagating laser beams detuned by 22 GHz
from atomic resonance (so that spontaneous emission is negligible), with their frequencies differing
by 100 kHz. The first Bragg pulse had a duration of 8 ms and coherently split the condensate into
two components uA& and uB& with equal numbers of atoms; uA& remained at rest and uB& received two
photon recoils of momentum. When they were completely separated, we applied the 500-ns phase
imprint pulse to the top half of uA&, which changed the phase distribution of uA& while uB& served as
a phase reference. A second Bragg pulse (duration 16 ms), 1 ms after the first pulse, brought uB& to
rest and imparted two photon momenta to uA&. When they overlapped again, 1 ms later, a third
pulse (duration 8 ms) converted their phase differences into density distributions at ports 1 and 2.
The image shows the output ports 1 and 2 as seen when we imprinted a phase step of p (29).
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tion has a large velocity in the 1x direction.
This velocity, which can be understood as
arising from the impulse imparted by the
optical dipole force, results in a positive den-
sity disturbance that travels at or above the
speed of sound. A dark notch is left behind;
this is a soliton moving slowly in the –x
direction (opposite to the direction of the
applied force).

We have numerically solved Eq. 1 in three
dimensions through the application of real-
space product formulas (32) and by using a
discrete variable representation of the wave
function (33) based on Gauss-Chebyshev
quadrature with 50 to 400 spatial grid points
in each dimension; in the latter approach, the
time dependence of the solution was obtained
by Runge-Kutta integration. Figure 3, F to J,
shows the results of the simulations where the
experimental phase imprint is approximated
as f(x, y) 5 (f0/2)[1 1 tanh(x/l )], where
f0 5 1.5p, and l 5 2 mm corresponds to an
imprinting resolution of ;4.4 mm (27, 34).
The calculated and experimental images are
in very good agreement.

A striking feature of the images is the
curvature of the soliton. This curvature arises
from the 3D geometry of the trapped conden-
sate and occurs for two reasons. First, the
speed of sound y0 is largest at the trap center,
where the density is greatest, and decreases
toward the condensate edge. Second, as the
soliton moves into regions of lower conden-
sate density, we find numerically that the
density at its center (n 2 nd) approaches zero,
d approaches p, and ys decreases to zero
before reaching the edge. The soliton stops
because its depth nd, rather than its phase
offset d, appears to be a conserved quantity in
a nonuniform medium.

Soliton speed. The subsonic propagation
speed of the notches seen in Fig. 3 shows that
they are solitons and not simply sound waves.
To determine this speed, we measured the
distance after propagation between the notch
and the position of the imprinted phase step
along the direction indicated in Fig. 3H. Be-
cause the position of our condensate varied
randomly from one shot to the next (presum-
ably because of stray, time-varying fields),
we could not always apply the phase step at
the center. A marker for the location of the
initial phase step is the intersection of the
soliton with the condensate edge, because at
this point the soliton has zero velocity. By
using images taken 5 ms after the imprint, at
which time the soliton had not traveled far
from the BEC center, we obtained a mean
soliton speed of 1.8 6 0.4 mm/s (35). This
value is significantly less than the mean
Bogoliubov speed of sound, y0 5 2.8 6 0.1
mm/s. From the propagation of the notch in
the numerical simulations (Fig. 3, F to J), we
obtained a mean soliton speed, ys 5 1.6
mm/s, in agreement with the experimental

value. The experimental uncertainty is main-
ly due to the difficulty in determining the
position of the initial phase step.

We can also compare the results of the
numerical 3D solutions of Eq. 1 to the ana-
lytical predictions of Eq. 2, which describes a
traditional dark soliton in a homogeneous, 1D
geometry. We calculated the soliton speed
using a local density approximation in Eq. 2
[n 5  p0(r)2, where p0(r) is the ground-
state solution of Eq. 1] from either the phase
or depth of the solitons obtained in the 3D
simulations. In every case examined, this
speed is in excellent agreement with the re-
sults of 3D numerical simulations.

Figure 4 shows the theoretical density and
phase profile along the x axis through the center
of the condensate 5 ms after the f0 5 1.5p
phase imprint (Fig. 3H). The dark soliton notch
and its phase step are centered at x 5 28 mm.
This phase step, d 5 0.58p is less than the
imprinted phase of 1.5p. The difference is
caused by the mismatch between the phase
imprint and the phase and depth of the soliton
solution of Eq. 1: Our imprinting resolution
(27) is larger than the soliton width, which is on
the order of the healing length ( j ' 0.7 mm),
and we do not control the amplitude of the
wave function. The mismatch produces features
in addition to the deep soliton, such as a shallow
dark soliton at x 5 214 mm moving to the left

and other excitations near x 5 20 mm moving
rapidly to the right. Most of these features are
not well resolved in the experimental images
(Fig. 3, A to E). We observed both experimen-
tally and theoretically that when the imprinted
phase step is increased, the weak soliton on the
left becomes deeper; when the phase step is
lowered, both solitons become shallower and
propagate faster.

We could avoid the uncertainty in the
position of the initial phase step and improve
our measurement of the soliton speed by
replacing the step mask (Fig. 1A) with a thin
slit (Fig. 1B). The thin slit produced a stripe
of light with a Gaussian profile (1/e2 full
width ' 15 mm). With this stripe in the center
of the condensate, numerical simulations pre-
dict the generation of solitons that propagate
symmetrically outward. We selected experi-
mental images with solitons symmetrically
located about the middle of the condensate
and measured the distance between them.
Figure 5A shows the separation of the pair of
solitons as a function of time. For a small
phase imprint of f0 ' 0.5p at Gaussian
maximum, we observed solitons moving at
the Bogoliubov speed of sound within exper-
imental uncertainty. For a larger phase im-
print of f0 ' 1.5p, we observed a much slower
soliton propagation, in agreement with numer-
ical simulations. An even larger phase imprint

1 ms 10 ms7 ms5 ms2 ms 

x

F G H I J

A B C D E

Fig. 3. Experimental (A to E) and theoretical (F to J) images of the integrated BEC density for
various times after we imprinted a phase step of ;1.5p on the top half of the condensate with a
1-ms pulse. The measured number of atoms in the condensate was 1.7 (60.3) 3 106, and this value
was used in the calculations. A positive density disturbance moved rapidly in the 1x direction, and
a dark soliton moved oppositely at significantly less than the speed of sound. Because the imaging
pulse (27 ) is destructive, each image shows a different BEC. The width of each frame is 70 mm.

Fig. 4. Calculated density and phase
along the x axis (dashed line in Fig. 3H) at
0 ms (thin lines) and at 5 ms (thick lines)
after applying a phase step imprint of
1.5p. The soliton located at x 5 28 mm
has a phase step of 0.58p and a speed of
1.61 mm/s, which is much less than that
of sound.
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generates many solitons (Fig. 5C).
The lower theoretical curve in Fig. 5A

shows that the speed of the corresponding
solitons (the slope of the curve) approaches
zero at a separation of ;33 mm before they
reach the edge of the condensate (whose
Thomas-Fermi diameter is 45 mm). This re-
sult follows directly from Eq. 2. Assuming a
constant soliton depth nd and working in the
Thomas-Fermi limit, the derivative of ys with
respect to time yields the equation of motion
dys/dt [ d2xs/dt2 5 –v2xs/2. Thus, the soli-
ton in a 1D trap should oscillate harmonically
with a frequency vs 5 v/=2, smaller than
the trap frequency v. Previous calculations
have also found this behavior (17). In our
system, therefore, the soliton should stop af-
ter one-quarter of the oscillation time, (p/
2)(=2/vx) ms, which is in agreement with
our 3D simulations. The 3D calculations,
however, indicate that the soliton does not
oscillate back after stopping, but instead
breaks up, forming vortices that migrate to
the BEC surface and disappear.

Future directions. The optical phase im-
printing and matter-wave interferometry tech-
niques presented here are new control and
analysis tools for wave function engineering
of Bose-Einstein condensates. For example,
the interferometer might also be used to study
randomness in the evolution of the conden-
sate phase (phase diffusion). Our optical im-
printing techniques could be extended to the
control of wave function amplitude, with the
use of near-resonant laser frequencies to in-
duce absorption. The probability of removing
atoms from the condensate would then be
proportional to the local intensity of the laser
beam, allowing us to tailor the density distri-
bution of the BEC in addition to its phase.

Future avenues for research include stud-
ies of soliton stabilities and the interactions
between solitons, as well as other nonlinear
dynamics of condensates. Another possibility
is the use of optical phase imprinting to create
quantized vortices in a BEC (2). The 2p

phase winding of the vortex wave function
around its core can be imprinted by imaging
an intensity pattern with a linear azimuthal
dependence (Fig. 1C). Quantized vortices in a
BEC are a manifestation of superfluidity and
have recently been observed in a two-com-
ponent condensate (4) and a condensate in a
rotating trap (36). We note that a group in
Hannover, Germany, has independently stud-
ied solitons in a BEC using optical phase
imprinting (37).
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