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ABSTRACT

The development of a novel sensing method coupled with a pattern recognition system is presented
as a non-destructive evaluation (NDE) technique for inertia friction welding. The complex nature of
solid-state welding processes, and, in particular, inertia friction welding, prevents a system from incor-
porating a simple model (e.g., upset) to separate acceptable from unacceptable welds when subtle process
variations occur. This work presents the application of an array of hon-contact, acoustic emission sen-
sors for determining bond integrity. The sensor data is explored through a variety of feature descriptors
(RMS, energy, attack and decay, and power spectrum) and, in some cases, fused with the machine data
(speed, pressure, and upset) in an attempt to develop a robust, in-situ NDE technique. The results are
presented for bar-to-bar inertia friction welding of copper to stainless steel which exhibits only marginal
weldability and, therefore, is ideally suited for validating the capabilities of this new sensing technique.

INTRODUCTION

Although friction welding is a relatively robust process, highly performance-critical or man-rated joints
require additional scrutiny. Examples of such critical friction welds abound in aerospace applications, e.g.,
shafts, discs, hubs, fan and helicopter blades, and rotors. In such environments, the total number of parts
made is generally low. Therefore, destructive evaluation is a very costly proposition, not to mention that
commercially available post-process, non-destructive evaluation (NDE) techniques are not able to detect all
of the fault conditions of possible concern. Hence, an in-process approach is invaluable in precision, small
lot manufacturing of mission- or performance-critical hardware.

For large lot manufacturing environments, the total number of parts can reach upward of tens to hundreds per
hour. Environments such as these perform routine destructive evaluation (commonly referred to as “book-
ending”) to ensure that the process is performing under control. Unfortunately, this method of inspection is
not always indicative of the integrity of bonds made before (or after) the part that is currently under scrutiny.
Furthermore, once a flaw is detected by destructive evaluation all parts produced previously must be rejected
(or reworked) regardless of quality. This method of quality inspection reduces productivity and increases
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waste and cost while never guaranteeing that each and every bond is adequate. An in-process approach can
alleviate this burden by providing a consistent, thorough, and real-time response to part quality and, thereby,
leaving only suspect parts for further post-process investigation by traditional destructive or non-destructive
methods.

This paper presents the development of an in-process monitoring solution for inertia friction welding (IFRW).
An Experimental Setup Section briefly describes the experimental approach. A Process Description Section
presents the in-process data that was collected. An overview of the four feature descriptors that were used
to explore the process data is presented in the Feature Analysis Section. A Results and Discussion Section
highlights the relevant results of this work. Finally, a Conclusions Section summarizes our findings and
lists the benefits of employing an in-process monitoring solution for large- and small-scale manufacturing
environments.

EXPERIMENTAL SETUP

The focus in this preliminary investigation was to search for and identify features within the acoustic energy
and/or machine data that are indicative of bond quality. Bar-to-bar inertia friction welding of 1-inch di-
ameter, oxygen-free, high-conductivity copper bar to 0.5-inch diameter, annealed Type 304L stainless steel
was used in this proof-of-concept study. This material combination exhibits only marginal weldability and,
therefore, was ideally suited for validating the capabilities of this new sensing technique. All welding was
conducted using a MTI Model 90B inertia friction welding system. The welding parameter selection was
based upon work by Bell, et al. (Ref. 1) but altered slightly to accommodate differences in available inertial
mass.

Prior to welding, all copper specimens were machined and stored for five weeks at ambient temperature and
pressure. In order to remove surface oxidation that might have developed during storage, selected copper
specimens were machined immediately before welding while bathed in isopropyl alcohol. Others were
welded as is. In all cases, the stainless steel was rotated during the weld cycle while the copper remained
fixed.

A non-contact array of microphones surrounds the weld joint and collects the rapid release of energy (i.e.,
sound pressure) due to the mechanical, thermal, and metallurgical phenomenon occurring during the weld
cycle. The acoustic transducers used in this research are off-the-shelf electret condenser microphones that
were sampled at 40 kHz per channel. The welding system provided process data (speed, pressure, and upset)
that was sampled at 100 Hz per channel.

A semi-quantitative evaluation of each joint was performed using unguided bend testing. As-welded, full-
size specimens were tested. Image analysis techniques were used to determine the percent of bonded area
after fracturing each specimen. A presentation of the experimental setup and the sensor can be found in
Ref. 2.

PROCESS DESCRIPTION

The process description for this work was captured with machine process data (speed, pressure, and upset)
and acoustic energy Representative plots for speed, pressure, upset, and acoustic energy are illustrated in

1A curious feature within all of the Cu-SS acoustic signatures is the presence of a second burst of acoustic energy soon after the
initial weld burst. This burst also coincides with a sharp drop in the speed to zero. One plausible explanation for this phenomenon



Figure 1. This data represents the process inputs for an in-process monitoring system, while the process
output (i.e., quality metric) is bond integrity.
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Figure 1: Representative plots for machine data and acoustic energy.

FEATURE ANALYSIS

Feature analysis involves implementing signal processing and data analysis technigues that explore and,
potentially, improve upon the “raw” data. The implementation of a specific feature analysis technique is
called a feature descriptor. Oftentimes, the raw data is in a format that is not conducive for direct input into
a classifier and, therefore, requires manipulation in order to reduce and/or enhance the data for classification

purposes.

is that as the weld material cools, its effective rheological behavior rapidly changes, and at a point the material reverts from a
viscoplastic behavior to a largely elastic behavior. This change could occur over a very short time, and thereby result in a sudden
“seizing” behavior. When this happens, an impulse load is effectively applied to the joint causing it to ring, and the acoustic sensor

is able to discern this ringing



Ideally, the implementation of a feature descriptor makes the decision making process of the classifier trivial.
The task of feature analysis is normally a domain-dependent operation. In addition to using the raw data in
a normalized format, the following feature descriptors were investigated: root mean square (RMS), energy,
attack and decay, and power spectrum. Each of these will be addressed separately in the following sections.
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Figure 2: Four feature descriptors are investigated in this work.
RMS

The root mean square value is one way of describing an AC waveform. A true RMS measurement relates
the heating potential of an applied voltage. The RMS gives the effective value of an AC voltage or current
signal by (1) squaring the instantaneous values, (2) calculating the mean, and then (3) taking the square root.
The following equation calculates the RMS value of an instantaneous current or voltage ignal,



RMS(f(t)) = \l |;/tt+T f()?], (1)

whereT = 1/f and f = fundamental frequency. A pure AC signal swings about a zero voltage (or
current) axis, going positive one moment and negative the next. Consequently, its average value over a
complete cycle is zero. The RMS value does not average out to zero, however, and is, therefore, essentially
the AC equivalent of DC voltage or current. Figure 2(a) illustrates the RMS for a representative acoustic
energy waveform.

Energy

The energy of a signa(t), is defined as

By = Y 1] . @

t=—00

The energy of a discrete-time signal(n), over a finite intervali- N < n < N, is defined as

E@n) =Y |=m)?. (3)
Figure 2(b) illustrates the energy calculation for four segments of a representative acoustic energy waveform.

Attack and Decay

The attack and decay feature descriptors are commonly applied in audio processing of voice and musical
instruments (Refs. 3,4). Attack and decay phases are described by fitting a linear or non-linear function

to a set of data. Attack descriptors are used for describing regions of increasing sound intensity, while,

conversely, decay descriptors are used for describing regions of decreasing sound intensity. Similar to the
energy descriptor, an important consequence of using attack and decay descriptors is in their ability to richly
define a signal in an extremely compressed manner.

In this work, the attack and decay feature descriptors were fit to both machine and acoustic energy data using
an exponential function of the form:

f(t) = ce . (4)

Figure 2(c) illustrates one attack and three decay descriptors for four segments of a representative acoustic
energy waveform.

Power Spectrum

The power spectrum is accomplished using a discrete Fourier transform (DFT). The DFT “transforms” an
ordered sequence of data samples from the time domain into the frequency domain. Spectral information



about the signal can be represented explicitly. In certain problem domains, the spectral information can prove
to be extremely revealing, e.g., when attempting to describe physical phenomenon that exhibit periodicity.

A moving-window DFT was performed on the AE data using the fast Fourier transform (FFT) algorithm. A
step size of 250 data points was used to move through the time-domain data without overlap. A representa-
tive power spectrum is illustrated in Figure 2(d).

RESULTS AND DISCUSSION

The experimental matrix consisted of 24 welds. Although the experimental matrix was designed with only
one variable in mind, i.e., surface preparation of the copper, three different quality welds were generated:
acceptable bonded area is approximately 100&@nditional bonded area is less than 100% but greater
than 5%, andinacceptablebonded area is less than 5%. Table 1 summarizes the bend test results.

Weld  Surface Condition Bond Bonded
Number  Before Welding Quality Area (%)
1-12 Freshly Machined Acceptable 100.0
13 Freshly Machined Conditional 80.0
14 Freshly Machined  Conditional 70.0
15 Freshly Machined Conditional 69.0
16 Freshly Machined Conditional 67.0
17 Freshly Machined Conditional 54.0
18 Freshly Machined Conditional 48.0
19 Freshly Machined Conditional 26.0
20-24 Not Machined Unacceptable 0.0

Table 1: Bend test results.

A Probabilistic Neural Network (PNN) was used as the classifier in this fvdike training/testing method

was motivated out of a limited size of the available data set. Commonly referred to as the single holdout
method, the training/testing method holds out one data point from-#ized data set for testing while the
remainingn — 1 data points in the data set are used for training. This procedure is repeated until all of the
data points in the data set have been tested independently. Classification accuracy is calculated based on the
sum of the correctly classified data points minus the sum of the incorrectly classified data points divided by

n.

Table 2 tabulates some of the more noteworthy process data combinations and feature descriptors that were
investigated. Tests 4 through 7 employed a data-level sensor fusion operation on the normalized machine

data, while tests 11 through 14 and 21 through 23 employed feature-level sensor fusion operations on the

machine data and on the acoustic energy and machine data, respectively.

Among the machine data, speed provided the most accurate classification results, which agrees well with
Bell, et al.’s (Ref. 1) findings, i.e., any minor contamination at the bond plane prevents a metallurgical bond
from occurring which is manifested in the speed curve. Furthermore, the decreasing accuracy between
acceptable versus unacceptable and acceptable versus conditional demonstrates the extreme subtleness that
bond plane contamination can have on bond quality for this particular material combination. The authors

2For a thorough presentation of Probabilistic Neural Networks see Ref. 5



Pattern Classification Results

Accuracy, [% correct]

Acceptable

Process Feature Acceptable | Acceptable| Unacceptable
Test Data Descriptor Unacceptablg Conditional | Conditional
1. | Speed Normalize 82 74 63
2. | Pressure Normalize 59 58 42
3. | Upset Normalize 59 74 63
4. | Speed, Pressure Normalize 76 63 54
5. | Speed, Upset Normalize 59 68 58
6. | Pressure, Upset Normalize 59 63 54
7. | Speed, Pressure, Upset Normalize 59 63 54
8. | Speed Attack and Decay 71 63 50
9. | Pressure Attack and Decay 65 68 50
10. | Upset Attack and Decay 47 68 50
11. | Speed, Pressure Attack and Decay 65 68 54
12. | Speed, Upset Attack and Decay 47 68 50
13. | Pressure, Upset Attack and Decay 59 63 46
14. | Speed, Pressure, Upset Attack and Decay 59 63 46
15. | Acoustic Energy RMS 71 47 46
16. | Acoustic Energy Energy (1 segment) 76 58 54
17. | Acoustic Energy Energy (4 segments) 94 31 41
18. | Acoustic Energy Attack and Decay 88 63 54
19. | Acoustic Energy Attack and Decay, Energ 94 52 50
20. | Acoustic Energy Power Spectrum 100 100 54
21. | Acoustic Energy, Speed Attack and Decay 82 68 71
22. | Acoustic Energy, Pressure  Attack and Decay 71 68 63
23. | Acoustic Energy, Upset Attack and Decay 72 68 63

Table 2: Pattern classification results for different combinations of process data and feature descriptors.

expect, however, that the classification accuracies (in all three categories) would improve with additional
training patterns.

Perfect classification accuracy was found to occur only during the acoustic energy power spectrum feature
descriptor (test 20). Upon further investigation, the authors found a unique characteristic ringing for both
an acceptable and conditional part. This ringing occurs during the second burst of acoustic energy (i.e.,
when speed reaches 0 rpin)The existence of this phenomenon is readily discernible in the power spec-
trum. Consequently, bond integrity classification of acceptable versus unacceptable and conditional versus
unacceptabfebonds becomes trivial — which is the ultimate goal of a feature descriptor.

The implementation of an in-process monitoring system does not, however, need to be limited to the use
of a single data combination and feature descriptor. The PNN classifier's computational efficiency and

3This phenomenon is analogous to the mechanism employed in a resonant inspection system: the acoustic response of a part is
monitored after being impacted by a hammer with a known and repeatable force.
“The classification results for conditional versus unacceptable is not presented in Table 2.



framework (i.e., its ability to not only provide a decision but also estimate the probability and reliability of

a classification) enables it to be implemented on multiple data sets and feature descriptors. The output of
each classifier (decision, probability, and reliability) can then be input into a decision-making module that
employs, for example, a voting or “winner takes all” template.

Furthermore, feature descriptors and data combinations that do not yield 100% classification accuracy
should not preclude their implementation in an in-process monitoring solution. In particular, an in-process
monitoring solution can provide additional feedback about the process, such as, fault classification. Al-
though the power spectrum is feature rich in indicating existence of a bad (or good) bond, it fails to reveal
the reason why. In-process data can potentially yield relevant process information, in the form of fault di-
agnostics, when an unacceptable bond is made. For IFRW, speed, for example, is an indicator of surface
contamination or joint misalignment. Consequently, the functionality of an in-process monitoring solution
can provide both quality indicators and fault diagnostics.

CONCLUSIONS

A bond quality classification system was developed using a novel, non-contact, acoustic emission sensing
technique. Various feature detectors were investigated to correlate the in-process data to bond integrity. The
system provides a (near) real-time response with minimal hardware requirements.

The following benefits can be achieved by using an in-process monitoring solution for both small- and
large-lot manufacturing environments:

e Fast provides a real-time response immediately after welding is complete,
¢ Inexpensiveminimal hardware requirements are necessary,

e Robust is capable of mapping complex or ill-defined multidimensional input/output systems and is
tolerant of noisy data,

e Consistent sensing and interpretation are performed without operator intervention and, therefore,
ensures an accurate, repeatable, and reproducible system,

e Thorough examination is performed for each weld, rather than randomly to ensure joint integrity,
o Efficient only suspect welds are examined further using an “inspect for cause” methodology, and

¢ Revealingin addition to providing quality feedback, an in-process monitoring system can potentially
expose the cause for failure and, hence, provide fault diagnostic capabilities.
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