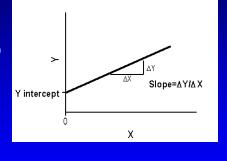
Multi-level Analysis I Recognizing the Problem

Maureen Smith, MD PhD Dept. of Population Health Sciences University of Wisconsin-Madison

June 5, 2004

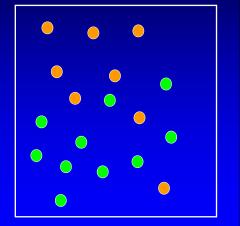
A day in the life of a researcher

- We have data
 - ID (observation #)
 - X (variable 1)
 - Y (variable 2)
- We want to use the value of X to explain the value of Y

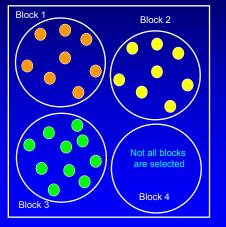

X	Y	
60	3	
75	6	
81	10	
70	7	
	5	
	60 75	

Welcome to the fantasy world of linear regression

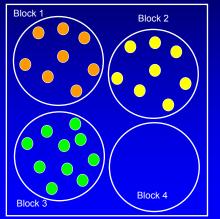
A simple model


y_i = intercept + slope(x_i) + error i indicates observations (1...N)

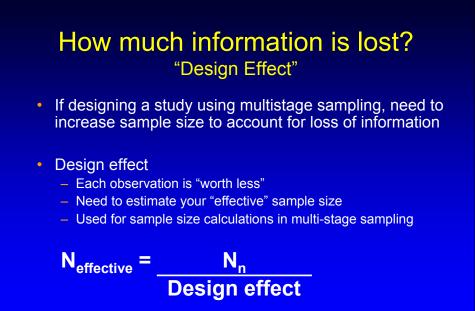
- Assumptions
 - Linearity
 - Independence
 - Normality
 - Constant variance


Reality check

- How often are observations truly independent from one another?
 - Dot indicates geographic location of teenager
 - Orange or green indicates hair color
- Do these teenagers look independent?


1) Clustering introduced in sampling

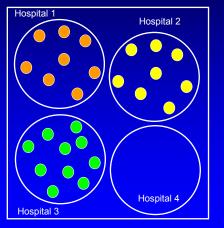
- Multistage sampling
 - Circles represent city blocks
 - Blocks randomly sampled
 - All persons in block surveyed to determine attitudes
- Persons in one block are more like their neighbors than persons who live in another block
- Nesting or clustering of data
 Persons within blocks


Effect of sample design on errors

- Errors in linear regression
 - Assume independence
 - Each person => info
 - Each person worth "1"
- If clustering occurs
 - Obs not independent
 - Each person => less info
 - Each person worth < "1"</p>

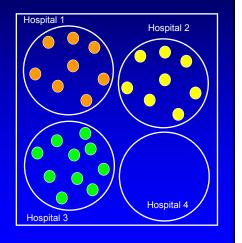
Simple linear regression won't work!

- Violates assumption of independence
- If don't account for it
 - Standard errors are too small
 - Makes coefficients look more significant
 - "You think there is more information in the data than actually exists"


Questions – Pair up!

- Multi-stage sample design
 - City blocks N= 3
 - Persons N=26
- Design effect = 2
- 1. What is the effective sample size?
- 2. What sample size would you use in your power calculations?

2) Clustering introduced naturally


- Analyze costs of care for hospitalized patients
- Patients in one hospital are more alike than patients in another hospital
- Nesting or clustering of data
 Patients within hospitals

Effect of natural clusters on errors

Same effect on errors

- Obs not independent
- Each person => less info
- Each person worth < "1"</p>
- Simple linear regression won't work!

What do we do?

- First question do we care?
 - Is clustering a nuisance?

OR

- Is clustering an interesting phenomenon?
- Leads to different analytic strategies

If clustering is a nuisance

- Example Multi-stage sampling
 - Don't care how people vary within city blocks versus between city blocks
 - Artificially imposed by the sampling design
 - Not interested in measuring it
 - Just want to correct for it
- Use analytic strategies that correct for clustering

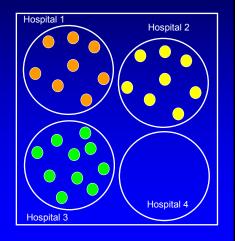
How to correct errors for clustering

- Robust estimates of variance
 - Stata ", robust cluster (____)"
 - SAS empirical estimates of variance
- Programs that account for complex survey design (weights, strata, clusters)
 - Stata "svy" commands
 - SAS "survey___" commands
- Other strategies

If clustering is interesting

- Example examine costs for hospitalized patients
- Split out the variation in costs
 - How much variation due to differences in patients?
 - How much variation due to differences in hospitals?
- Examine factors that explain variation in costs
 - Characteristics of patients
 - Characteristics of hospitals
- Analytic strategy = Multi-level modeling!

Questions


- 1. Identify 3 patient characteristics that might explain variation in costs
- 2. Identify 3 hospital characteristics that might explain variation in costs
- 3. Do you think more of the variation in costs is explained by the patient or the hospital?

Multi-Level Models

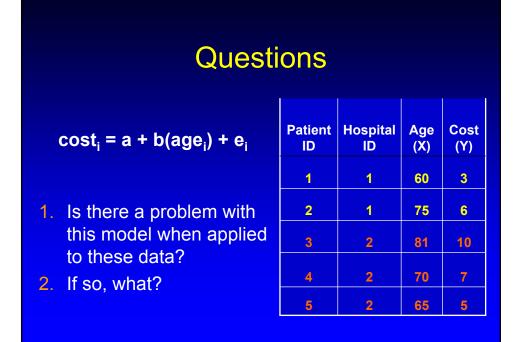
(Hierarchical linear models) (Random effects models)

The concept of "levels"

- Our example 2 levels
 - Micro = patients (N=26)
 - Micro-level = "units"
 - Macro = hospitals (N=3)
 - Macro-level = "groups"
- At each level
 - Patient characteristics
 - Hospital characteristics

Data Structure - Patient

Patient-level data (= "unit-level data")

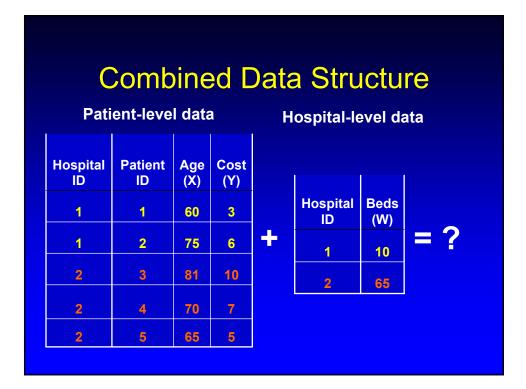

Patient ID	Hospital ID	Age (X)	Cost (Y)	
1	1	60	3	
2	1	75	6	
3	2	81	10	
4	2	70	7	
5	2	65	5	


- Y represents a patient characteristic
 - Cost (thousands of \$)
 - X represents a patient characteristic
 - Age
 - Note understand process at each step
 - "Older patients are sicker and tend to cost more"

Simple Linear Regression

$y_i = a + bx_i + e_i$

- i indexes patients (i=1 to N)
- Relates x to y
- Both variables are patient characteristics
- Remember the assumptions



Data Structure - Hospital

Hospital-level data (= "group-level data")

Hospital ID	Beds (W)
1	10
2	65

- W represents a hospital characteristic
 - # of beds in the hospital
- Bigger hospitals are more expensive
 - More technology
 - More high-cost specialists
 - "A built bed is a filled bed"

Combined Data Structure

Patient- and hospital-level data

Patient ID	Hospital ID	Age (X)	Cost (Y)	Beds (W)
1	1	60	3	10
2	1	75	6	10
3	2	81	10	65
4	2	70	7	65
5	2	65	5	65

- Age (X) and Cost (Y)
 - Variation between patients
- Beds (W)
 - Only variation between hospitals
 - No variation within hospitals

WARNING – Equations coming up!

Remember - In multi-level modeling ...

SUBSCRIPTS ARE YOUR FRIENDS!

Simple Linear Regression (one approach to modeling this data structure)

$\mathbf{y}_{ij} = \mathbf{a} + \mathbf{b}\mathbf{x}_{ij} + \mathbf{d}\mathbf{w}_j + \mathbf{e}_{ij}$

j indexes hospitals (j=1 to N)

i indexes patients within hospitals (i=1 to n_i)

cost_{ij} = a + b(age_{ij}) + d(beds_j) + e_{ij}

Frequently used

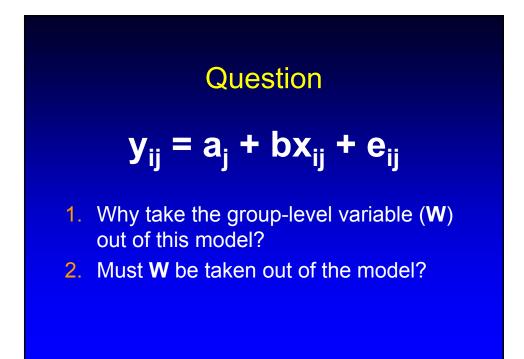
Questions $a_{a} + b(a_{a} + d(b_{a} + a_{a}) + a_{a}$						
cost _{ij} = a + b(age _{ij}) + d(beds _j) + e _{ij}						
1. Is there a	Patient ID	Hospital ID	Age (X)	Cost (Y)	Beds (W)	
problem with this model when	1	1	60	3	(W) 10	
applied to these		10				
data?	3	2	81	10	65	
2. If so, what?	4	2	70	7	65	
	5	2	65	5	65	

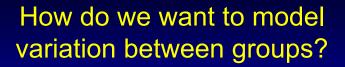
The Problem, Part 2

- You must assume that all of the data structure is represented by the explanatory variables
- Unlikely this will account for the clustering of patients within hospitals
 - Assumes that all clustering within hospitals is explained by the number of beds in the hospital (W)
 - If "beds" does not explain all clustering, then assumption of independence is not met for e_{ii}

 Let the regression coefficients vary from group to group

$y_{ij} = a_{j} + b_{j}x_{ij} + dw_{j} + e_{ij}$


- Groups j can have higher or lower values of a_i and b_i
- Why not create d_i?


Starting simple – random intercept

- Model the clustering between groups
 - Let the intercept only (a_i) vary from group to group
 - Take out all group-level variables (W)

$$\mathbf{y}_{ij} = \mathbf{a}_j + \mathbf{b}\mathbf{x}_{ij} + \mathbf{e}_{ij}$$

- Groups j higher or lower values of a_i only
- Assumes some groups tend to have, on average, higher or lower values of Y

- W a "partial" way to model variation between groups
 - If included, it will pick up part of the variation between groups
 - "Part of the variation in costs between hospitals will be explained by the number of beds in the hospital"
- Goal of a random intercept model
 - Model the actual structure of the data
 - Let groups vary, on average, in Y
 - "Let the hospitals vary, on average, in cost"

How do we actually do it?

Split a_i into (a₀ + u_i)

$\mathbf{y}_{ij} = \mathbf{a}_0 + \mathbf{u}_j + \mathbf{b}\mathbf{x}_{ij} + \mathbf{e}_{ij}$

- **a**₀ = average intercept (constant)
- u_i = deviation from the average intercept for group j
 - = conditional on X, individuals in group j have Y values that are u_i higher than in the average group
- "Conditional on patient age, patients in Hospital j have costs that are u_i higher than the average costs for all patients"

What do we do with u_j? Part 1 – Fixed effects

- Are groups j regarded as unique?
 - Do you want to draw conclusions about each group?

TREAT AS "FIXED EFFECTS"

- Create j 1 indicator variables (0/1)
- Leads to j 1 regression parameters

Questions

$$cost_{ij} = a_0 + b(age_{ij}) + u_j + e_{ij}$$

- For our data, what does this equation look like if u_j is modeled as a fixed effect?
- 2. Are all indicator variables in a model also fixed effects?

Patient ID	Hospital ID	Age (X)	Cost (Y)
1	1	60	3
2	1	75	6
3	2	81	10
4	2	70	7
5	2	65	5

Modeling \mathbf{u}_{j} as a fixed effect

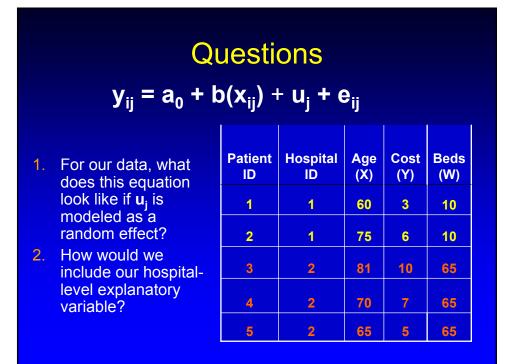
(**u**_j = "differences between hospitals")

$cost_{ij} = a_0 + b(age_{ij}) + c(hosp2_{ij}) + e_{ij}$

- hosp2 = 0/1
 - 1 = patient i in hospital 2, 0 = patient i in hospital 1
- Do we need index j? No why?

$cost_i = a_0 + b(age_i) + c(hosp2_i) + e_i$

What assumptions does this model make?


What do we do with uj?

Part 2 – Random effects

- Three issues
 - Are groups regarded as sample from pop.?
 - Do you want to test the effect of group level variables (remember W = # beds)?
 - Do you have small group sizes (2-50 or 100)?

TREAT AS "RANDOM EFFECTS"

- Model u_i explicitly
- Additional assumption that u_j is i.i.d.
 Groups (hospitals) considered exchangeable
 - Con include group lovel explanatory verichles
- Can include group-level explanatory variables (W)

Modeling u_j as a random effect

(**u**_i = "differences between hospitals")

$cost_{ij} = a_0 + b(age_{ij}) + u_j + e_{ij}$

u_j = deviation from the average cost for hospital j
 = estimated using HLM, SAS, Stata (get a number!)

$cost_{ij} = a_0 + b(age_{ij}) + d(beds_j) + u_j + e_{ij}$

- Uses the number of beds in the hospital to explain some of the variation in u_j
- Last question what happens to u_j if the number of beds explains all of the differences between hospitals?

What we did and didn't do today

We discussed

- Clustering (artificial and natural)
- Accounting for clustering
 - Nuisance = robust estimates of variance
 - Interesting = multilevel models
- Representing clustering in simple model
 - Fixed effects
 - Random effects with group-level explanatory variables

We didn't discuss

- Random coefficients other than the intercept
- Interaction terms (cross-level effects)
- Many other things

