Market Power in Transmission-Constrained Electricity Markets: Analyzing Effects of Market Structure and Design

Benjamin F. Hobbs

Department of Geography & Environmental Engineering Department of Mathematical Sciences Whiting School of Engineering The Johns Hopkins University Baltimore, MD

California ISO Market Surveillance Committee

Thanks to Udi Helman, Yi-Hsu Chen, Andrew Liu, Jong-Shi Pang, Carolyn Metzler, Fieke Rijkers, & Adrian Wals for their collaboration: NSF, ECN, & FERC for support

Outline

I. Simple models (for insights): How can I manipulate prices? Let me count the ways

II. Regional models (for numbers): Analyzing market power in complex markets

- a. Eastern Interconnection: Who is most vulnerable?
- b. Northwest Europe: How does market power affect the value of new transmission?

I. Market Power = The ability to manipulate prices persistently to one's advantage

- Generators may be able to exercise market power because of:
 - economies of scale
 - large existing firms
 - transmission costs, constraints
 - siting constraints, long lead time for generation construction

Fundamentals: Review of Linearized DC Model

- Analogue to Ohm's Law:

 (θ_A θ_B) ∝ P_{AB}*R_{AB}
 (ΔVoltage angle ∝ power*reactance)
- Analogue to Kirchhoff's Current Law:
 Σ_j P_{Aj} = 0 (No net power inflow to a bus)

Odd Implications of Laws

- Can't "route" flow
 - parallel flows
 - "paths" are a fiction

- Adding a line can worsen transmission capability
- Even if no generation constraints are binding, marginal cost at a bus can be:
 - < 0, or
 - >> the highest marginal cost of any generator

Three Modes of Exercising Market Power in Transmission-Constrained Power Markets

- 1. Modes *not* depending on transmission constraints
 - Withdraw capacity in regional market
 - Increase input costs of rivals (NOx allowances in California; Wolak & Kolstad)
- 2. Modes depending on Current Law only (can happen in radial market)
- 3. Models depending on Current & Voltage Law (network effects)

Note: "Dec game" (and many other California games) *not* market power--rather, arbitrage arising from poor market design

1. Classic Market Power Exercise: Duopoly at Single Bus

- *Competition:* P = \$0, Q= 100 MW
- Duopoly: P = \$33, Q = 67 MW Consumers lose!

2. Market Power in a Radial System: Monopolist in Load Pocket on Two Bus System

- *Competition:* P_A = \$0, P_B = \$0, Q= 100 MW
- Local monopoly: P_A = \$0, P_B = \$60, Q = 40 MW Consumer loses!

2. Financial Transmission Rights Can Exacerbate Market Power: Generator in Load Pocket Owns FTRs *into* Pocket (Joskow & Tirole, 2001)

- *Without* FTRs, local monopolist maximizes:
 - $P_B(20+g_B)^*g_B \Rightarrow$ Strong incentive to withhold capacity
- *With* FTRs from A into B, local monopolist maximizes:

 $P_{B}(20+g_{B})^{*}g_{B} + (P_{B}(20+g_{B}) - P_{A})^{*}FTR$

 \Rightarrow Stronger incentive to withhold capacity

Financial Transmission Rights Can Weaken Market Power: Generator in Load Pocket Owns FTRs out of Pocket (Joskow & Tirole, 2001)

• *Without* FTRs, local monopolist maximizes:

 $P_B(20+g_B)^*g_B \Rightarrow$ Strong incentive to withhold capacity

• With FTRs from B out to A, local monopolist maximizes:

 $P_{B}(20+g_{B})^{*}g_{B} - (P_{B}(20+g_{B}) - P_{A})^{*}FTR$

 \Rightarrow <u>Weaker</u> incentive to withhold capacity

(e.g., Cramton PJM proposal to mitigate local market power)

2. Duopoly on Two Bus System:

Cournot Model (Oren 1997) in which duopolists "see" constraint

- *Competition:* P_A = \$0, P_B = \$50, Q= 50 MW
- Duopoly: P_A = \$50, P_B = \$50, Q = 50 MW ISO loses!

3. Voltage Laws

- Increased competition can *increase* prices
- Optimal strategy for large company may be to expand production at some plants to congest grid

Duopoly With Identical Costs at Two Different Buses: Transmission Not Binding, Prices Identical Everywhere

- All lines have same reactance
- No congestion: $P_A = P_B = P_C = 33

More Competition Can Worsen Consumer Welfare: Generator at B Mitigated (Competitive, bids zero), Generator at A still has Market Power:

Cournot Energy Market, Bertrand (Price Taking) for Transmission Service

- Competitive generation expands output from 33 MW to 50 MW
- Prices now higher for consumers: P_c rises from \$33 to \$38

Optimal Market Power Strategy: *Expand Output* and Lower Local Price Generator 1 (at B and C) is Oligopolist, Generator 2 (at A) is Price Taking

• Oligopolist optimally sells 7 MW at B below cost

 \Rightarrow rival must cut production from 40 MW to 20 MW at A

⇒oligopolist can sell *more* at C (33 MW instead of 30 MW)--at *higher* price (\$40 rather than \$30)

II. Evaluating Designs & Anticipating Problems with Complex Models: Questions

What might be the effect of policies concerning...

- Generation structure
- Transmission investment
- Market rules

...upon...

- Economic efficiency
- Income distribution
- Emissions

...considering generator strategic behavior?

- Bidding
- Capacity withdrawal
- Manipulation of transmission
- Manipulation of emissions allowances markets

Projecting Prices & Assessing Market Power: Our Approach

- Equilibrium models
- Variations:
 - Market mechanisms
 - Electrical network
 - Interactions among players
- **But**:

"The principal result of theory is to show that nearly anything can happen" (Fisher, 1991, oft quoted by R. O'Neill)

Computational Approach: Direct Solution of Equilibrium Conditions

- 1. Derive first-order (KKT) conditions for each player
- 2. Impose market clearing conditions
- 3. Solve resulting system of conditions (*complementarity problem*) using PATH

US Eastern Interconnection Cournot Model (Udi Helman (FERC) Ph.D. thesis, JHU)

- 100 nodes representing:
 - US Control Areas
 - Interconnections with ERCOT, WECC, & Canada
- 2725 generating plants; ~600,000 MW capacity
- 829 firms (including 528 NUGs)
 - ~100 largest (> 1000 MW) are Cournot (regardless of current ownership)
 - rest competitive "fringe"
- Linearized DC load flow
 - 814 interfaces

HHIs Poorly Predict Simulated Price Markups (Control Areas, SPP NERC Region)

HHI (Capacity Based)

Market Integration: Belgium-Netherlands

(with Fieke Rijkers & Adrian Wals, ECN)

• COMPETES

- Competition and Market Power in Electric Transmission and Energy Simulator
- Cournot generators compete bilaterally
- Competitive arbitragers in some markets
- Two transmission pricing systems:
 - -Physical network
 - Linearized DC load flow
 - Several nodes per country
 - Multiple networks ("n-1" contingencies)
 - -Path-based representation
 - One node per country → one market price per country
 - Interfaces defined between countries
 - Crediting for counterflows (netting vs. no-netting

Competitive Prices (€/MWh)

Value of New Transmission

- Literature: value can be higher under oligopoly – because transmission intensifies competition
- Transmission policy matters! Value (10⁶ € /y) of +50% Interface Capacity:

		Consumer	Net Welfare
Scenario	Cost Savings	Value Increase	Improvement
Competitive	172	28	200
Cournot	170	10	180
Cournot, No Netting	117	294	411

Market Power Research: Some Suggestions

- Dynamic models of implicit collusion
 - Static models don't capture "repeated game" nature of power markets
- "Gotcha!": How can we reasonably infer that market power has been exercised?
 - Usual approach: estimate marginal cost curve, compare to bids & market outcomes (Bushnell, Joskow/Kahn ...)
 - Nonconvexities can lead to mistaken diagnoses of "capacity withholding" (Harvey/Hogan, Rajaraman/Alvarado)
 - Let's simulate! For realistic systems, how large might these price distortions be?
 - Bayesian combination of models, expert judgment, empirical data?
- Empirically compare models
 - "Run-up": higher P-MC margins when capacity is short