RADIOLOGICAL EMERGENCY MANAGEMENT FINAL EXAMINATION

1.	Αu	unit used to express the exposure an individual receives is the:
	a.	Rem/hr
	b.	Roentgen
	c.	Curie
	d.	Rad
2.	The	e rem is a unit used to measure:
	a.	Radiation exposure
	b.	Radiation dose in terms of the amount of energy absorbed
	c.	Radiation dose in terms of the amount of the biological effect caused by the amount of energy absorbed
	d.	Radioactivity
3.		cause of its low penetrating ability, the type of radiation which is usually only a hazard when inhaled ngested is:
	a.	Alpha radiation
	b.	Beta radiation
	c.	Gamma radiation

d. Neutron radiation

Radiological Emergency Management Independent Study Course

4.	Which of the following is an example of proper units for expressing exposure rate?
	a. Hr/R
	b. R/hr
	c. Hr:R
	d. r:hr
5.	Cosmic radiation and radiation from terrestrial sources are examples of:
	a. Natural background radiation
	b. Natural man-made radiation
	c. Industrial sources of radiation
	d. Radioactive sources used in the medical field
6.	An example of a man-made source of radiation is:
	a. Terrestrial sources
	b. Cosmic radiation
	c. Diagnostic radiation
	d. Potassium-40 in the human body
7.	The three factors which are important in protecting individuals from radiation are:
	a. Time, shielding, and dose rate
	b. Dose rate, time, and gender
	c. Time, shielding, and distance
	d. Distance, time, and dose rate

8.	Rac	diation received by the body over a short period is:
	a.	Chronic exposure
	b.	Sublethal exposure
	c.	Acute exposure
	d.	Supralethal exposure
9.	Chı	ronic exposures are:
	a.	Amounts of radiation received over a short period of time
	b.	Amounts of radiation received over a very long period of time
	c.	Acute exposures which affect only critical organs of the body
	d.	Acute exposures which affect all parts of the body
10.	Rac	lioactive decay is defined as:
	a.	The decrease in the amount of any radioactive material due to the spontaneous emission of nuclear radiation from the nucleus
	b.	The decomposition of radioactive atoms due to lengthy exposure to direct sunlight
	c.	The gradual decrease in the number of radioactive atoms in radioactive material due to spontaneous fission
	d.	The decline in the strength of a radioactive source due to the combined effects of time, distance, and shielding
11.		e key elements of emergency management are, Response, Recovery and, tigation.
	a.	Removal
	b.	Preparedness
	c.	Measurement
	d.	Employment

12.	The	e majority of radioactive material shipments are made in this type of packaging.
	a.	Type A
	b.	Type B
	c.	Limited Quantity
	d.	Industrial
13.	Тур	be B packages must be able to meet Type A requirements and also withstand the effects of conditions?
	a.	Higher radiation
	b.	Accident
	c.	Higher weight
	d.	Faster transportation speed
14.		e label required for radioactive material packages with a maximum dose rate of 200 mR/hr at the face of the package is:
	a.	Radioactive Yellow-II
	b.	Radioactive Yellow III
	c.	Radioactive White I
15.	The	e label required for radioactive material packages in excess of 50 mr/hr but less than 200 mr/hr is:
	a.	Radioactive Yellow-I
	b.	Radioactive Yellow-II
	c.	Radioactive Yellow-III
16.	To at the	determine the amount of radioactive material in a package of radioactive materials, you would look he:
	a.	Placard
	b.	Label
	c.	Package type

- 17. The distinctive symbol used to identify radioactive materials is the:
 - a. Diamond
 - b. Tri-blade
 - c. White square
- 18. Unbroken radioactive material packages never have a surface radiation dose above this level:
 - a. 50 mR/hr
 - b. 100 mR/hr
 - c. 500 mR/hr
 - d. 1,000 mR/hr
- 19. A member of the public should give lifesaving first aid to injured victims of a radiological transportation accident:
 - a. Without delay out of concern for radiological hazards
 - b. After verifying that no radioactive material packages have broken open
 - c. After isolating the area
 - d. Immediately after notifying the appropriate authorities
- 20. In the United States, serious radiation exposures:
 - a. Have not resulted from radiological transportation accidents due largely to the nature of the material transported and the use of appropriate protective packaging
 - b. Have resulted from improper labeling of radioactive material shipments
 - c. Have resulted from improper packaging of radioactive material shipments
 - d. Frequently result from radioactive transportation accidents due to the large number of such shipments
- 21. In every power plant that generates electricity, the following components are present:
 - a. Heat source, steam generator, cooling tower
 - b. Heat source, turbine electricity generator, pump
 - c. Turbine electricity generator, pump, cooling tower
 - d. Pump, steam generator, cooling tower

22.		chain reaction results when a uranium atom is struck by released by a nearby nium atom undergoing fission.
	a.	Electron
	b.	Proton
	c.	Gamma ray
	d.	Neutron
23.		e three main barriers in a nuclear power plant to prevent release of fission products are the fuel rods, reactor vessel, and the
	a.	Secondary coolant system
	b.	Containment building
	c.	Condensor
	d.	Control rods
24.	То	prevent fuel damage, decay heat must be removed from the reactor core:
	a.	Until the reactor shuts down
	b.	After the reactor shuts down
	c.	Until the primary coolant system is activated
25.	Coı	ntrol rods are used in a reactor core to:
	a.	Absorb free neutrons
	b.	Are a source of free neutrons which are used to cause fission
	c.	Encase the nuclear fuel
26.	In a	a pressurized water- reactor the primary cooling water:
	a.	Boils in the core and is used to turn the turbine
	b.	Evaporates to the atmosphere using a cooling tower
	c.	Transfers its heat to the secondary cooling water in a steam generator

27.	A la	arge modern nuclear power plant has approximitely fuel assemblies in its core.
	a.	100
	b.	50
	c.	200
	d.	500
28.		clear power plant emergency plans are required to incorporate actions for which of the following es of radiological hazards?
	a.	Direct exposure to radiation from a plume of radioactive material
	b.	Blast effects
	c.	Fallout
29.	In a	, a major failure has occured, but an immediate response by the blic is not needed.
	a.	General Emergency
	b.	Site Area Emergency
	c.	Alert
	d.	Unusual Event
30.		vacuation is required following a nuclear power plant accident, it is recommended that individuals ng anywhere closer than miles be evacuated.
	a.	2 to 3
	b.	3 to 5
	c.	5 to 10
	d.	15
31.	A d	letonation of a nuclear explosive above 100,000 feet of altitude is called
	a.	An air burst
	b.	A high-altitude burst
	c.	A sub-cosmic burst
	d.	A surface burst

32.		clear explosions can beapon.	of times more powerful	than the largest conver	ıtional
	a.	Hundreds			
	b.	Thousands			
	c.	Millions			
	d.	Billions			
33.	The	e total energy released in a nuclear explosion,	is the explosion's:		
	a.	Thermal energy			
	b.	Blast			
	c.	Energy yield			
	d.	Nuclear energy			
34.	The	e immediate destructive action of a nuclear ex	plosion is caused by this.		
	a.	Heat			
	b.	Radiation			
	c.	Shock			
	d.	Dust			
35.	A n	nuclear explosion which releases energy equiv	alent to 7,000,000 tons of	f TNT:	
	a.	Is called a 7 kiloton burst			
	b.	Has an energy yield of 7 kilotons			
	c.	Is called a 7 megaton burst			
	d.	Has a thermal energy release of 7 million kild	ograms		

36. Just as in an emergency resulting from a nuclear power accident, the three most important w reducing the radiation exposure from fallout from a nuclear weapon are:		
	a.	Time, shelter, and gender
	b.	Dose rate, distance, and time
	c.	Dose rate, distance, and shielding
	d.	Time, distance, and shielding
37.	Rac	dioactive fallout makes the surface it comes into contact with radioactive. (True or False?)
	a.	True
	b.	False
38.	Rac	diological survey instruments:
	a.	Will not be very reliable after a nuclear detonation because of weak batteries and no sure way of checking the strength of those batteries
	b.	Will give just an approximate answer which will need to be corrected using the "7: 10 Rule of Thumb"
	c.	Are the most accurate and reliable means of determining exposure levels
	d.	Will be very reliable following a nuclear detonation since they usually use AC line current
39. According to the "7:10 Rule of Thumb," if the exposure rate one hour after detonation of a nuclear weapon is 500 R/hr, the exposure rate approximately 14 days later (343 hours) will be approximately		cording to the "7:10 Rule of Thumb," if the exposure rate one hour after detonation of a nuclear apon is 500 R/hr, the exposure rate approximately 14 days later (343 hours) will be approximately:
	a.	50 R/hr
	b.	5 R/hr
	c.	0.5 R/hr
	d.	0.05 R/hr
40.	The	e 7:10 Rule of Thumb:
	a.	Is 100 percent accurate
	b.	Helps estimate future exposure levels
	c.	Is more reliable than radiological survey instrument readings
	d.	Is accurate to within ± 10 percent

Radiological Emergency Management Independent Study Course

41.		eryone is exposed to radiation on a continuing basis from either	or
	a.	Uranium, thorium	
	b.	Radon, uranium	
	c.	Natural, man-made	
	d.	Terrestrial, extra-terrestrial	
42.		diation that individuals are exposed to on a continuing basis which is considered non life-threatened also know as this kind of radiation?	ng
	a.	Cosmic	
	b.	Intrinsic	
	c.	Background	
	d.	Uneventful	
43.	Jus	t under half of man's exposure to external natural radiation comes from?	
	a.	Radon	
	b.	Cosmic radiation	
	c.	Rocks	
	d.	Food	
44.	Rac	don dose comes primarily from its daughter products which are?	
	a.	Ingested	
	b.	Counted	
	c.	Inhaled	
	d.	Touched	

45.	The	e two radionuclides which concentrate in seafood are:
	a.	Lead and mercury
	b.	Thorium and mercury
	c.	Lead and polonium
	d.	Polonium and mercury
46.	Ву	far, the radionuclide used in most nuclear medicine procedures is:
	a.	Carbon-14
	b.	Strontium-90
	c.	Technicium-99m
	d.	Cobalt-60
47.		clear medicine techniques work through the detection of this kind of radiation, injected into the body adding a radioisotope to a certain drug:
	a.	Alpha particles
	b.	X-rays
	c.	Gamma-rays
	d.	Neutrons
48.	Caı	ncerous tumor cells can be treated by high energyor
	a.	Neutrons, alpha particles
	b.	Neutrons, electrons
	c.	Gamma rays, X-rays
	d.	Gamma rays, neutrons

Radiological Emergency Management Independent Study Course

- 49. Most debris from a nuclear weapons test:
 - a. Fell immediately
 - b. Was pushed into the troposhere
 - c. Was pushed into the stratosphere
 - d. Disintegrated
- 50. Many smoke detectors contain:
 - a. Americium-241
 - b. Carbon-14
 - c. Strontium-90
 - d. Iodine