Data Extraction: 40 Chemicals from 18 Sources

Report for the NDWAC CCL Work Group Plenary Meeting September 17-18, 2003

Attribute Scoring Data Set

- Purpose: extract and organize data for testing proposed attribute scoring approaches for PCCL to CCL classification
- 40 chemicals with a range of data availability
- 18 data sources with a range of data types and formats
- Identify data extraction issues

Attribute Scoring Data Set - 10 chemicals randomly selected from:

- CCL Universe Example Data Set
 - Gate 1
 - Gate 4
 - Chemicals With No Health Effects or Occurrence Data/Info
- National Reconnaissance of Emerging Contaminants (NREC)
 - Now in CCL Universe Example Data Set

Attribute Scoring Exercise Chemicals

Gate 1	Gate 4	Outside Gates	NREC
1,3-Dichlorobenzene	Carbonyl sulfide	(E)-2-Hexenyl butyrate	17a-Estradiol
Boron	1,2-Dibromo-2,4- dicyanobutane	2-Propanol, 1-(tert- dodecylthio)-	5-Methyl-1H- benzotriazole
Chloroethane	2,3,7,8- Tetrachlorodibenzofuran	alpha-Damascone	bis-Phenol A
Dicamba	Aluminum oxide	C.I. Pigment yellow 119	Cimetidine
n-Butylbenzene	Ethylene	Dimethyl trisulfide	Diethylphthalate
Methane, dibromo-	Ethane, 1-chloro-1,1- difluoro-	Flamprop	Equilin
Hexachlorobutadiene	Heptachlorodibenzo-p- dioxin	Isobutyric acid	Lincomycin
Zinc	Isocyanic acid, methyl ester	Naphthalene, 1,2,3,4- tetrahydro-	Phenanthrene
Metolachlor	Phosgene	Phthalide, 6-(dimethylamino)- 3,3-bis[p- (dimethylamino)phenyl]-	Tetracycline
Vanadium	Diazomethane	Sodium acid pyrophosphate	Warfarin

Occurrence Sources

- Agency for Toxic Substances and Disease Registry (ATSDR) - Internet HazDat
- United States Geological Survey (USGS) -National Water Quality Assessment (NAWQA) Program
- USGS National Reconnaissance of Emerging Contaminants (NREC)
- NLM Hazardous Substance Databank (HSDB)

Chemical Property Sources

- National Library of Medicine (NLM) -ChemIDplus
- National Center for Manufacturing Sciences -Solv DB
- Syracuse Research Corporation (SRC) -PHYSPROP database
- NLM Hazardous Substance Databank (HSDB)

Health Effects Sources

- ATSDR Toxicological Profiles
- NLM Chemical Carcinogenesis Research Information System (CCRIS)
- International Programme on Chemical Safety (IPCS) Concise International Chemical Assessment Documents (CICADs)
- NLM Developmental and Reproductive Toxicity (DART)
- NLM Genetic Toxicity (GENETOX)
- NLM Hazardous Substance Databank (HSDB)
- USEPA Integrated Risk Assessment System (IRIS)
- IPCS Joint Expert Committee on Food Additives (JECFA)
- IPCS Joint Meeting on Pesticide Residues (JMPR) Monographs
- National Toxicology Program (NTP) Toxicity & Health/Safety Reports
- Risk Assessment Information System (RAIS) Toxicity Factors (and supporting data)
- Registry of Toxic Effects of Chemical Substances (RTECS)
- NLM TOXLINE

25 Data Sources from Example CCL

Data/Information Downloading

- Tabular Sources (e.g., NAWQA)
 - Downloaded to MS Excel
 - Developed summary statistics
 - Imported to MS Access
- Monographic Sources (e.g., JECFA)
 - Text and data cut and pasted into Access as textual memo fields
- Bibliographic Sources (e.g., TOXLINE, DART)
 - Downloaded to Endnote

Types of Data Elements Obtained

Health Effects

- RfD, SF, UR, LO(A)EL, NO(A)EL, LD₅₀
- Supporting study data (e.g., dose, duration)
- Absorption, excretion, metabolic data (not obtained)
- Inhalation-based data (not obtained)

Occurrence

- Obtained/developed summary statistics
 - Mean, maximum, ranges, frequency of detection
- Obtained production/use information

Chemical property data

- e.g., solubility, Henry's Law
- Half-lives (not found)
- Production (not found except HPV list)

Example of Data -1

1,3-Dichlorobenzene - Health Effects Data

Example of Data -2 1,3-Dichlorobenzene - Occurrence Data

Example of Data -3 1,3-Dichlorobenzene – Data from text sources

Example of Data -4 1,3-Dichlorobenzene – Data from text sources (continued)

Data Extraction Level-of-Effort

Varies greatly

- Extraction method
- Tabular, monographic, bibliographic
- Complexity of format
- Number of chemicals in source data/information
- Number of data elements in source

TYPE	Data Extraction/ formatting time	Example
Tabular	0.25 to 5 days	SRC Physprop
Mono- graphic	1 to 5 days	HSDB
Biblio- graphic	1 to 10 days	DART

Example - Registry of Toxic Effects of Chemical Substances - RTECS

- RTECS is a bibliographic source with a twist: reports data values from various studies
- Each RTECS field is designated with a tag at the start of the line, and a tag for the start of different sections
- Wrote a program to gather specific data
- Data of interest [e.g. Lowest Observable Adverse Effect Level (LOAEL) from multiple dose studies] was automatically entered into tables

Issues with RTECS Importing

- Not all rows began with a tag (e.g. study title)
- Some sections contained extraneous data
- Data was within text, though in a standardized format
- Not every file had the same group headers or the same fields for each entry – some missing
- Units are as cumulative dose, rather than customary daily dose

Solutions to the RTECS Importation

- A parsing program was customized to:
 - Recognize that non-tagged rows went with the previous field
 - Recognize when fields or groups were not provided
- Text fields with data were parsed using string functions
 - Followed a particular pattern 99% of time
 - Remaining values were extracted manually

Data Extraction Issues: Compiling Monographic Data and Information

- Textually-formatted data/information not well suited for entry in a tabular format
 - Data contained in textual passages
 - Requires individual data source programs
 - We're learning programmers have had successes segregating values from text
 - Continue to evaluate and consider alternatives
 - Requires careful review post processing

Data Extraction Issues: Elemental and Inorganic Contaminants

- Metals
 - Data/information for elemental and inorganic forms is voluminous
 - Various oxidation states
 - Differences in toxicity (e.g., Cr⁺³, Cr⁺⁶)
 - Differences in chemical properties (e.g., Na⁰ vs. Na⁺)
- Analytical Methods
 - Speciate by oxidation state
 - Do not report individual inorganic compounds
 - May not match CAS # for compounds

Lessons Learned on Data Extraction

- Demonstrated it is feasible to extract and develop data
- Level of Effort to obtain data ranges from hours to days
 - An option for the more difficult text sources is a placeholder table with candidate identifiers, letting the user know information on candidate exists in the source
- Developing programs to obtain data from text sources
 - Requires flexibility in programs to account for exceptions to patterns
 - May still require some manual entry, but will be limited to a set of sentences rather than entire file

Recommendations/Next Steps

- Develop a hierarchical approach for CCL data gathering
 - Avoid gathering duplicate/extraneous data
 - Update knowledge on elements for each contaminant before going to additional sources
 - Identify desired elements in each source in advance
- Continue to develop and test parsing programs to obtain the data needed
- Develop approach for inorganics
- Create and track a consistent approach