The Spallation Neutron Source Monthly Report

October 2003

~ U.S. Department of Energy Multilaboratory Project

CONTENTS

PROJECT OVERVIEW AND ASSESSMENT	3
TECHNICAL AND PROGRAMMATIC PROGRESS	
WBS 1.4 Los Alamos Linac	5
WBS 1.4 Thomas Jefferson Linac	6
WBS 1.5 Ring and Transfer Systems	7
WBS 1.6 Target Systems	8
WBS 1.7 Instrument Systems	9
WBS 1.8 Conventional Facilities	10
WBS 1.9 Integrated Control Systems	11
WBS 1.3, 1.4, 1.5 Accelerator Systems Division	12
WBS 1.2 Project Support	13
COST/SCHEDULE PERFORMANCE REPORTS	15
GLOSSARY	20

Cover Picture: Successful completion of DTL Tank 1 commissioning

Project Overview and Assessment

Technical Assessment: Cost Assessment: Schedule Assessment: Overall Assessment: Satisfactory Satisfactory Satisfactory Satisfactory

Highlights:

- Good project performance continues with minor cumulative schedule and cost variances against the March 2006 early finish schedule. Through the end of October 2003, 73.1% of the project is complete. Completion percentages are:
 - ◊ 97 % of R&D
 - ♦ 93 % of design
 - ◊ 67 % of technical hardware (including procurement and fabrication)
 - ♦ 76 % of conventional construction
 - ♦ 42 % of installation

Assessment and Issues:

. Accelerator Systems Division (ASD): The commissioning of DTL tank #1 was completed with a very successful high power run. In particular, a time averaged beam of 1.0 mA was accelerated to 7.5 MeV. This beam, accelerated to 1.0 GeV, would correspond to a beam power of 1.0 MW! This demonstrates the high-beam-current capability of the hardware and is the last very high power run until SNS has beam on the mercury target. Halo and scraping studies were also completed, demonstrating that a more round beam in the HEBT significantly reduced halo. The HVCM for the RFQ and DTL #1 worked reliably. Seventeen drift tubes (DT's) (out of a total of 27) have been installed in DTL #4. The DTL #5 tank has been leak tested and is leak tight. The first 15 DT's for DTL #5 (of a total of 23) have been fiducialized, magnet mapped, and leak tested. Cooling manifold installation has begun. Tank #6 vacuum seals are being prepped. The first RF module of the CCL has been shipped to ORNL and plans have been made to reassemble the module in the linac tunnel. The installation of the RF system for CCL #1 has been completed and that for medium beta cryomodules #1, 2, 3 and 4 is nearing completion. The factory acceptance test for the 805-MHz 5.0-MW SN 1 klystron is complete and the tube has been shipped to ORNL. A total of 31 of 81 Niobium cavities have been qualified at JLAB; since the JLAB Cavity Review, seven cavities have been successfully qualified. Cryomodule #5 has been tested, meets specifications, and will be shipped to ORNL. The two halo collimators have been installed in the HEBT tunnel along with their iron shielding. The first 21Q40 quadrupole was measured and installed in the HEBT tunnel. Ring cabling installation continues to go well and all heavy cabling to the arcs has been completed. Approximately two miles of heavy cable are pulled per week.

Experimental Systems Division (XFD): Installation of the Target monolith continues on schedule. The drain pipe has been welded and pressure testing of the core vessel completed. The first nine interstitial blocks have been delivered and the four pedestal manipulator base plates have been placed above the monolith as part of the first high bay

- The available contingency balance of \$44.8M will be reduced to \$31.3M once the changes identified in the Estimate at Completion are incorporated into the baseline.
- Excellent safety performance continues. As of October 25, 2003, the Project has worked in excess of 2.6 million hours with 44 recordable injuries (an increase of one since the last report) and no lost work day (away) cases. No environmental concerns have been noted.
- The semi-annual DOE SC review was held in the beginning of November. The review team commented on the excellent progress thus far and reaffirmed confidence in the project team. Continued diligence in the management of contingency and identification of cost saving opportunities were recommended.

floor concrete placement. The bids for the inner plug assembly have been received and are being evaluated. On the instrument side, the detector team has been given the chance to test their linear position sensitive detectors in Time of Flight mode at the accelerator front end. Neutron spectra were recorded at several positions, and both the prompt pulse and a delayed tail associated with partially-thermalized neutrons were observed. Instrument procurement actions are proceeding well and a vendor has been selected for the liquids reflectometer sample table.

Conventional Facilities (CF): Storm drains are being installed in the area of the north Ellipse Road near the RTBT truck entrance. This will prevent future flooding problems in the Ring and RTBT tunnels. Installation of the liner over the final section of the Ring and RTBT tunnel sections has restarted and is proceeding east toward the east Make Up Air (MUA) building. Piping, ductwork, plumbing, electrical and masonry work continues in the Target Building with the bulk of work still occurring in the basement, on the instrument floor and in the 2TU building. Concrete has been placed around the monolith at the high bay level. A portion of the hot cell ceiling is being formed for a series of concrete placements. The problem of surface voids in the concrete has been resolved and they are being chipped out and repaired with heavy weight grout. Repairs of the mercury pan have been identified and are being pursued. The CLO building construction continues with mechanical, electrical and plumbing work ongoing at various locations throughout the building. Installation of the siding on the south side of the building has begun and the contractor is accelerating his work to allow an early date for dry-in. The foundations for the Target/CLO pedestrian bridge have been located and the modified bridge design has been turned over to the contractor for a proposal. The boilers in the CUB are now operational and hot water, chilled water and power are fully available as required by ASD for installation and commissioning.

SNS

Project Overview and Assessment (con't)

Total Project	Oct03	Cum-to-Date
BCWS	18,886	1,012,895
BCWP	18,437	999,620
ACWP	17,047	993,716
CV	1,390	5,904
SV	-449	-13,275
СРІ	1.08	1.01
SPI	0.98	0.99
Budget at Com	plete	1,366,913
Contingency		44,788
Total Project C	ost	1,411,701

Total Project Cost (TPC) \$1,411.7 M 74.1% Percent planned (cumulative) 73.1% Percent complete (cumulative) \$1,192.7 M **Total Estimated Cost (TEC)** \$944.2M Cost and Commitments through 10/31/03 Outstanding Phase Funded Awards \$68.3M Budget to Complete \$203.8M Contingency \$44.8M Estimate at Completion \$1,161.4M

Remaining Contingency Based on \$31.3M EAC (~20%)

••••

. .

M1	lestones	5:

Description	Milestone Date	Forecast Date
CD-1 Mission Need	Aug-96	Aug-96 🗸
CD-2 Baseline Approved	Dec-97	Dec-97 🗸
CD-3 Begin Construction	Nov-99	Nov-99 🗸
CD-4 Project Complete	Jun-06	Mar-06

Critical Path:

Based on the March 30, 2006 completion date, no activities in the project schedule show negative float at this time.

While no single area in the Target Systems shows negative or zero days float, the Target Module Plug and the Hot Cell construction both show approximately one month positive float. However, for the Target Module Plug, this is a loss of 20 days of float from last month. Completion of the Target Module specification, required for bidding fabrication of the plug, has caused this one month slip.

Construction of the Hot Cell remains critical with 20 days of positive float, unchanged from last month. Availability of the Hot Cell drives loading of target Mercury and conducting integrated startup testing of the target systems and the Target Readiness Assessment.

Highlights:

Linac Systems-Los Alamos National Lab

CCL Module 2

All first article components for the 5-MW RF system (klystron, circulator, load) for the Coupled Cavity Linac (CCL) have passed LANL site acceptance tests at the full SNS specification and have been shipped to ORNL. An agreement has been reached with Thales that compensates for a reduction of the 5-MW klystron specifications. However, the Thales 550-kW SCL klystrons are still problematical, even after the reduction in specifications. SN 7 passed factory acceptance tests but was later damaged in packing by a Thales technician and will need to be reworked. Four more CPI SCL klystrons (S/Ns 35-38) have been shipped to ORNL.

Testing of the final circulator marked completion of the site acceptance testing of the 2.5-MW RF system for the Drift Tube Linac.

- Both the prototype and production HVCMs at LANL operated to power two HPRF test stands during October. The pulse-width-modulation test data on a HVCM system at ORNL have been analyzed and a trap network assembly has been detailed that will be used to minimize output ripple. Work has begun on start-pulse configurations to minimize back diode oscillations, core flux offset, and IGBT start currents for the SCL modulators.
- Despite some new problems that arose in the manufacturing of drift tubes for the DTL, the drift tubes continue to be shipped to ORNL to support installation in Tanks 4, 5, and 6.
- Module-level tuning of CCL Module-1 has been completed at the vendor and it has been received at ORNL. While progress on CCL Module-2 is encouraging, the required January delivery date is still of concern and the schedule for the remaining modules continues to be closely managed.
- Completion of diagnostics deliverables continues on schedule. The remaining DTL BPMs were mapped as part of the final drift-tube cleaning and inspection process, and all look good. The software on the Digital Front Ends is being upgraded in preparation for changing the operating system on the BPM electronics. All DTL and CCL wirescanner electronics and PCs were shipped and received at ORNL.

The key concern at this time is the CCL module delivery schedule. Close vendor oversight will be continued. Assessment/ **Issues:**

Performance	and Milestones.
	and windstones.

Description	Milestone Date	Forecast Date
Linac Design Complete	Sep-02	Apr-02 🗸

	Oct03	Cum-to-Date
BCWS	-2,573	168,874
BCWP	2,684	167,460
ACWP	2,314	167,873
CV	370	-413
SV	5,257	-1,414
CPI	1.16	1.00
SPI	-1.04	0.99
Budget at Comple	ete	186,253
Planned % Complete 90.		90.7%
Actual % Comple	te	89.9%

Cost Performance:

Cause and Impact: None required Corrective Action: None required

Schedule Performance :

Cause and Impact: The current period variances are due to incorporation of the 1.4.1 HPRF ETC which was implemented in October to properly rephase the RF work and baseline the turnover of work from LANL to ORNL by the end of March 2004.

Corrective Action: Continued vendor liaison will be performed to ensure the schedule and quality of deliverables is maintained.

Assembly of the cavity string for M-8 is complete and the string is under vacuum.

Linac Systems- Thomas Jefferson National Accelerator Facility

Highlights:

- Shipment and installation of SNS cryomodule M-3 in the tunnel was completed.
- Assembly of cryomodule M-6 was completed and asssembly of cryomodule M-7 has begun.
- Testing of cryomodule M-5 is continuing.
- In the first two weeks of November, a total of five medium- β cavities have been qualified under the new procedures. There have been no failures. Most had higher thresholds for the onset of field emission, accelerating gradients at $Q_0 = 5 \times 10^9$ of 15 MV/m or higher, and all had significantly lower radiation output. Enough cavities are now qualified to assemble cavity strings for M-8 and M-9.

Assessment/ Good progress has been made in reducing the number of cavity retests since incorporation of new processes and procedures.

Performance and Milestones:

	Oct03	Cum-to-Date
BCWS	883	59,897
BCWP	551	58,748
ACWP	716	61,047
CV	-165	-2,299
SV	-333	-1,149
CPI	0.77	0.96
SPI	0.62	0.98
Budget at Comp	olete	66,044
Planned % Complete		90.7%
Actual % Complete		89.0%

Cost Performance:

Cause and Impact: The cumulative cost variance is a result of the additional effort required in the Medium Beta cavity qualification. *Corrective Action:* Implementation of the new procedures appears to be having a positive effect. An ETC will be performed in the Spring of 2004 once a specific course of action (incorporating the results of the review and the test program) has been finalized.

Description	Milestone Date	Forecast Date
Linac Design Complete	Sep-02	Apr-02 🗸
Initiate Testing of Prototype Cryomodule	May-02	Apr-02 🧹

Schedule Performance:

Cause and Impact: The cumulative unfavorable schedule variance results from the difficulty in maintaining a consistent cavity qualification process.

Corrective Action: See above corrective action.

HEBT Collimators installed

Ring and Transfer Line Systems- Brookhaven National Lab

Highlights:

- The first Ring RF system including the RF cavity, power amplifier and a set of power supplies, has been delivered to ORNL.
- The large field errors (sextupole component) measured in 30-cm ID quadrupoles were attributed mostly to the misalignment of magnet coil. Modeling by the AP group confirmed the measurement findings. These undesired components were successfully reduced by shimming with G10 inserts.
- The first of 8 ring doublet assemblies and the first of 4 ring quarter-cell assemblies were successfully test-assembled.
- Magnet measurement of a 41-cm ID ring correctors (41CDM30) indicated an abnormal harmonics component. Later verification showed a wiring defect made by the vendor. Two repairs have been made at the vendor.
- Magnetic measurement of the ring injection chicane dipole #3 was completed and agreement with computer calculations is satisfactory. This dipole is intended to compensate for the tapering effect on the circulating beam from chicane dipole #2, designed for the collection of stripped electrons at injection.
- The accelerator physics group continues to evaluate several schemes of magnet sorting to optimize the performance of the ring magnets. Schemes based on resonance elimination were shown to effectively diminish the impact of magnet nonlinear imperfections.
- The extraction kicker Pulse-Forming-Networks were successfully tested at the vendor.
- The lattice location of the HEBT momentum collimator has been finalized and installation drawings are being circulated for the final review and sign-off.

Assessment/Issues:

S: No issues to report.

Performance and Milestones:

Description	MilestoneForecaDateDate	
Ring Design Complete	Oct-03	Jul-03 🗸

• • • • • • <u>• • • • • • • • • • • • • </u>		
	Oct03	Cum-to-Date
BCWS	1,022	97,794
BCWP	1,448	96,246
ACWP	1,730	93,570
CV	-282	2,675
SV	426	-1,548
СРІ	0.84	1.03
SPI	1.42	0.98
Budget at Cor	nplete	118,504
Planned % Co	Planned % Complete 82.5	
Actual % Con	nplete	81.2%

Cost Performance :

Cause and Impact: The positive cost variance is the cumulative effect of a decrease in BNL's procurement burden. The PCR that has been implemented to compensate for the lower actual costs being incurred will gradually deplete this positive variance. *Corrective Action:* None required

Corrective Action: None require

Schedule Performance :

Cause and Impact: The schedule variance is largely due to a lag in the processing of accounting documentation for receipt of the HEBT low field power supplies. The remainder of the variance is due to delays in the HEBT collimator scrapers. The latter does not impact any installation activities.

Corrective Action: None required

Core Vessel Installation

Target Systems- Oak Ridge National Lab

Highlights:

- Installation Package 1 has been completed and Installation Package 2 of the monolith equipment installation has begun. Installation of the lower section of core vessel onto the inner support cylinder has been completed, satisfying a major project and UT-Battelle milestone.
- The cryogenic system cold box that houses a large Helium heat exchanger, various values, and an expansion turbine, is in place.
- The large inflatable seal for the target module has been successfully tested by the vendor.
- The lead formwork shells for the Target and Beam Dump Utilities first article IX Column and Filter Housing were completed and lead has been poured into the formwork shells. The first article IX column will be used in testing the handling and transport cart that will be used by Operations.
- The Target and Beam Dump Utilities Gas Panel and the Target Protection System procurements have been awarded.
- Factory testing of the four servomanipulator arms was successfully completed. Two will be fitted into the hot cell servomanipulator bridge system and two will be mounted on the pedestal manipulator.
- The complete set of radiation resistant video cameras has been received at the vendor and the hot cell video system fabrication is now ready for factory testing.

Assessment/ Issues:

• Target building construction schedule and target systems installation schedule continue to be integrated/optimized to minimize schedule/cost issues.

Performance and Milestones:

	Oct03	Cum-to-Date
BCWS	4,161	88,401
BCWP	2,615	83,762
ACWP	2,508	83,179
CV	106	583
SV	-1,547	-4,639
СРІ	1.04	1.01
SPI	0.63	0.95
Budget at Com	plete	124,682
Planned % Cor	nplete	70.9%
Actual % Com	plete	67.2%

Description	Milestone Date	Forecast Date
Target Design Complete	Jun-03	Jun-03 🗸
Start Target Installation	Jun-03	Apr-03 🗸
Start System Test with Beam	June-06	Mar-06

Cost Performance:

Cause and Impact: None required *Corrective Action:* None required

Schedule Performance:

Cause and Impact: The cumulative schedule variance is due to delays in delivery of interstitial blocks and slow crane/telemanipulator progress at the vendor.

Corrective Action: These delays do not impact project completion as this particular work does not comprise the project's longest path.

Neutron guide stands for the Backscattering Spectrometer

Instrument Systems- Argonne and Oak Ridge National Labs

Highlights:

- The mounting support to be used with the Astrium bandwidth limiting choppers went out for bid.
- The Neutron Scattering Software Initiative (NeSSI) workshop was held at SNS October 13-15, 2003 to assess user requirements for an integrated data analysis and visualization system for SNS.
- A customized cryofurnace was received as part of the SNS sample environment effort. This cryofurnace will be commissioned in collaboration with HFIR and initially operated at HFIR where it will be used to evaluate designs of SNS heat shields and other structures.
- Work on the personnel protection systems for the instruments has begun.
- Meetings with the vendor for the goniometer/sample stage for the magnetism reflectometer covered the design and dimensions of components and subcomponents of incident/detector arm and sample stage.
- Final acceptance testing of the first 2 Astrium bandwidth choppers for the magnetism reflectometer has been completed.
- The remaining two 20cm x 20cm 2-dimensional detectors from Brookhaven National Laboratory have been received.

Assessment/ Issues: No issues at this time.

Performance and Milestones:

	Oct03	Cum-to-Date	
BCWS	982	45,344	
BCWP	659	45,021	
ACWP	606	44,968	
CV	53	53	
SV	-323	-323	
СРІ	1.09	1.00	
SPI	0.67	0.99	
Budget at Complete 80,0		80,036	
Planned % (Planned % Complete 56.7%		
Actual % Complete		56.3%	

Description	Milestone Date	Forecast Date
Start Instrument Installa- tion	Mar-04	Jan-04
Instrument Design Com- plete	Oct-04	Aug-04
Complete Subproject Ac- ceptance Tests	June-06	Mar-06

Cost Performance:

Cause and Impact: None required *Corrective Action:* None required

Schedule Performance:

Cause and Impact: The current period schedule variance is due to delays in design effort that were largely caused by lost time due to personnel moves to Oak Ridge. The remainder was caused by one improperly phased procurement activity that is spread from October 2003-May 2004 and should have been planned only for May 2004.

Corrective Action: A PCR will be completed to correct the procurement activity.

Top of the Target Monolith

Conventional Facilities- Oak Ridge National Lab

Highlights:

- ASD received BOD of the RTBT Service Building.
- Construction of the East and West Makeup Air Buildings and the Ring Injection Dump continues.
- Phase III of the final land improvements work, the RTBT Tunnel backfill & liner installation is underway. Installation of storm drain pipes at the North Ellipse Road and the east and west CLO parking lots has begun.
- Installation of the Hot Cell liner pan is in progress. All construction trades are progressing in the basement level and south side instrument level areas of the Target Building.
- Structural steel erection is substantially complete with punch list items ongoing for the CLO General Construction effort. Fireproofing continues as well as piping, electrical conduit, cable tray and stud wall installation. Siding, roofing and glass installation is also underway.
- Testing and labeling of fiber optic cable continues and installation of the fiber optic backbone to the Ring Service Building has begun.
- The Fire Alarm System is being installed in the CLO.

Assessment/ **Issues:**

The Target Hot Cell Ready For Equipment (RFE) date is currently forecasted for April 12, 2004, a critical date to ensure completion of target installation efforts. The CLO is currently forecasted to be complete 7 October 2004. However, project staff currently located off-site will move into portions of the CLO in June 2004.

	Oct03	Cum-to-Date	
BCWS	8,679	291,686	
BCWP	5,238	289,224	
ACWP	5,383	285,304	
CV	-146	3,920	
SV	-3,441	-2,462	
CPI	0.97	1.01	
SPI	0.60	0.99	
Budget at C	Complete	367,540	
Planned %	Complete	79.4%	
Actual % C	omplete	78.7%	

Cost Performance:

Cause and Impact: The positive cumulative cost variance is due to the inclusion and statusing of contract mods in the baseline. Actual costs have not yet been incurred for these activities even though the work is completed. Accruals will be placed against these mods as soon as all the procurement work required has been completed. Corrective Action: None required

Schedule Performance:

Cause and Impact: The negative schedule variance is the result of behind schedule progress for the Target Crane, Target General Construction and CLO General Construction.

Corrective Action: None required

Performance and Milestones:

Description	Milestone Date	Forecast Date
Award AECM Contract	Nov-98	Nov-98 🗸
Start Site Work	Mar-00	Mar-00 🗸
BOD Front End Building	Dec-02	Oct-02 🗸
BOD 1000 MeV Linac	Apr-03	Dec-02 🎺
BOD Ring Tunnel	Aug-03	Jun-03 💙
BOD Target Building	May-05	Feb-05
Construction Complete	Nov-05	Mar-05

Controls cable trays

Integrated Control Systems- Oak Ridge National Lab

Highlights:

- Analysis of why the Input-Output Controllers stopped communicating during the DTL-1/D-Plate run consumed much of the month and included the help and interest of EP-ICS collaborators during the ICALEPCS meeting in Korea. Some issues were resolved and a relatively stable system was available when the run resumed. Analysis of remaining issues continues.
- The Cryogenic Control System is now on-line, supporting around-the-clock operation of the Central Helium Liquefier Purifier System. Since the facility is not manned around the clock, an automatic phone dialer was installed and tested. Selected Purifier System alarms have been configured to activate the dialer and notify CHL operations personnel that a problem exists. The Control System is being used to support clean-up of the main warm compressors. The ability to dynamically change the control loop process variable has helped automate this activity. Checkout and calibration of most of the sensors and actuators on 4 of the 6 Central Helium Liquefier main compressor skids was completed in October.
- The field device installation, conduit and cabling for the CHL Oxygen Deficiency Hazard (ODH) system in the warm compressor area is 90% complete. Cabling in this area has been tested to verify the cabling and functionality of the field devices. The field device and conduit installation in the cold box area is also 90% complete.
- Fabrication of controls racks for the Ring and RTBT Service Buildings was completed. This completes all rack fabrication except for a modification that will be needed to support the collimator cooling water skids in the ring tunnels.
- Installation of the Linac segment of the Personnel Protection System (PPS) continues.

Assessment/Issues:

No issues at this time.

Performance and Milestones:

Description	Milestone Date	Forecast Date
Start Front End Controls Installa- tion	Oct-02	Jun-02 🗸
Global Controls Design Complete	Jan-03	Sep-02 🗸
Global Controls Subproject Test Complete	May-06	Mar-06

· · · · · <u>·</u>	• • • • • • • • • • • • • • • • • • • •		
	Oct03	Cum-to-Date	
BCWS	1,321	38,461	
BCWP	805	37,667	
ACWP	697	37,544	
CV	108	123	
SV	-516	-794	
CPI	1.16	1.00	
SPI	0.61	0.98	
Budget at Con	plete	61,337	
Planned % Co	mplete	62.7%	
Actual % Com	plete	61.4%	

Cost Performance:

Cause and Impact: None required *Corrective Action:* None required

Schedule Performance:

Cause and Impact: None required *Corrective Action:* None required

Installed cryomodules 1,2 and 3

Accelerator Systems Division-Oak Ridge National Lab

Highlights:

- DTL Tank #1 Commissioning is complete and the resulting measured beam quality is very positive: the transmission is 100% within measurement uncertainty; the RMS transverse emittance core is 0.2 pi-mm-mrad; the RMS transverse emittance with tails is 0.3-pi mm-mrad compared to a requirement of 0.3-pi; and the bunch length is ~25 degrees RF.
- On October 3, 2003, the RFQ cavity changed resonant frequency to 402.0 MHz, 0.5MHz lower than the nominal 402.5 MHz. Significant deviations from a flat distribution and two power loops exhibiting unusually high reflected power were also found. The RFQ was retuned back to its nominal frequency.
- The first 805-MHz side-coupled CCL copper structure has been successfully frequency tuned at ACCEL Germany. This was a joint effort between LANL, ORNL and ACCEL.
- The third medium-beta cryomodule has been delivered to ORNL and placed in the tunnel.
- Repair of the 1-MW 805-MHz JLAB RF test stand has been completed and testing of components has resumed.
- HEBT and Ring installation, including cabling, continues to go well.
- The move of the technology groups from the RATS building to trailers and laboratories on the SNS site has been completed, allowing ASD to vacate the RATS building and its lease.

Assessment/ Issues: Deliveries of CCL and DTL components are being closely monitored to determine potential impacts on installation and commissioning activities.

Performance and Milestones:

	Oct03	Cum-to-Date	
BCWS	2,856	89,939	
BCWP	2,897	89,422	
ACWP	2,294	89,808	
CV	602	-386	
SV	41	-517	
CPI	1.26	1.00	
SPI	1.01	0.99	
Budget at Complete		168,660	
Planned % C	Complete	53.3%	
Actual % Complete		53.0%	

Description	Milestone Date	Forecast Date
Start Front End Installation	Sep-02	Jun-02 🗸
Start Linac Installation	Sep-02	Apr-03
Start Ring Installation	Aug-03	Jul-03 🗸
FE Beam Available to DTL	Mar-03	Dec-02
Linac Beam Available to HEBT	Aug-05	May-05
HEBT& Ring Beam Available to RTBT and Target	Feb-06	Nov-05

Cost Performance:

Cause and Impact: None required *Corrective Action:* None required

Schedule Performance:

Cause and Impact: None required *Corrective Action:* None required

CLO construction

Project Support-Oak Ridge National Lab

Highlights:

- Site erosion control measures continue to be monitored and maintained. The repair to the slope by the Bethel Valley Access Road was completed without major erosion and has been reseeded. The effectiveness of the repair and the reseeding will be routinely evaluated.
- Revisions to the Target Safety Analysis continue, with authors assigned and deadlines established. The updated document will be delivered to DOE before the end of the calendar year.
- A meeting was held with the DOE individual responsible for the SNS water permits. It was agreed that the condensate from all SNS air handling units, except those in the basement of the Target building, can be disposed of in either the ORNL sanitary sewer system or the SNS storm drains. Each air handling unit will be evaluated to determine which system should receive the condensate. This decision represents a significant operational savings as well as enhanced flexibility for future facility modifications.
- The air permit for the SNS Central Exhaust Stack has been finalized, and is being routed from the Tennessee Department of Environment and Conservation (TDEC). Permits for the boilers in the CLO are currently under development by the TDEC, and are expected in the near future.

• • • • • • • • • • • •	• • • • • • • • • •	
Assessment/Issues:	Managing within budget.	Continuing strong focus on cost control and contingency management.

External Review Data:

Progress on External Review Recommendations in the month of October is as follows:

Review	Recommendations	Closed This Month	Open Actions
DOE End Game Review (7/03)	5	2	2
DOE SC Review (5/03)	29	20	5
DOE SC Review (11/02)	35	1	1

Life of Project Market Experience:

Major Awards (\$M)	Baseline Estimate	Baseline Savings	Percent savings
	(\$M)	(\$M)	over baseline
529.7	523.5	-32.5	-6.5%

Through November 18, 2003: 95% of the major procurements already awarded.

Performance:

Project Support– Oak Ridge National Lab (con't)

	Oct03	Cum-to-Date
BCWS	1,217	102,318
BCWP	1,203	101,888
ACWP	576	100,398
CV	627	1,490
SV	-13	-430
CPI	2.09	1.01
SPI	0.99	1.00
BAC (1.1.13&1.2)	114,621
BAC (1.10.3&1.1	0.5)	32,110
Planned % Cor	nplete	69.7%
Actual % Com	plete	69.4%

Cost Performance Cum to Date:

Cause and Impact: None required *Corrective Action:* None required

Schedule Performance Cum to Date:

Cause and Impact: None required *Corrective Action:* None required

Milestones:

Description	Milestone Date	Forecast Date
EIS ROD	Jun-99	Jun-99 ✔
PSAR Issued for Approval	Dec-99	Dec-99✓
Submit PSAR to DOE for Approval	Dec-99	Dec-99✓
PSAD issued for Information	Sep-00	Sep-00 🗸
Issue FSAD for approval (Front End and Linac)	Sep-02	Aug-02 🗸
Issue FSAD for approval (Ring and Transfer Lines)	Jun-05	Apr-05
FSAR Issued for Approval	Aug-05	Jun-05
Complete Physical Construction and Project Acceptance Test	Jun-06	Mar-06

CLO

SN	5	A U.S. Department of Energy m	ultilaboratory projectLa	boratory SPI/CPI
le	Leeb Mar Apr May June July Aug Seep	A U.S. Department of Energy m	ultilaboratory project La a b b c b b c c c c c c c c c	boratory SPI/CPI
ct Performance is stab	12 Los Alamos Laboratory 0.8 Prior 0.9 Prior 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	Lawrence Berkeley National Laboratory 0.8 Prior Oct Nov Dec Jan Schedule Perf Index (SP1) 100 0.99	Thomas ^{1.2} Jefferson National 1.0 Accelerator Facility 0.8 Prior Oct Nov Dec Jar	12 12 Total 10 Project 10 0.8 Prior Oct 0.8 Prior Oct Nov Dec Jan Schedule Perf Index (CPI) 0.09 0.09 0.09 Oct Jan
Overall Proje	Argonne 12 12 12 13 13 14 15 16 16 17 16 </td <td>Brookhaven National 10 Laboratory 0.8 Prior Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep - Schedule Perf Index (SP1) 0.98 0.98</td> <td>12 12 AE/CM 10 0.8 10 0.8 10 Prior 0ct 101 101 101 101 101 101 100 0.99</td> <td>0ak Ridge 12 National 10 Laboratory 0.8 Prior 0ct Nov Dec Jan Feb Mar Apr Mar June June (CPI) 100 Total (D1) 100</td>	Brookhaven National 10 Laboratory 0.8 Prior Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep - Schedule Perf Index (SP1) 0.98 0.98	12 12 AE/CM 10 0.8 10 0.8 10 Prior 0ct 101 101 101 101 101 101 100 0.99	0ak Ridge 12 National 10 Laboratory 0.8 Prior 0ct Nov Dec Jan Feb Mar Apr Mar June June (CPI) 100 Total (D1) 100

Phase funded procurements at the end of October could obligate an additional \$68.3M, raising the total obligation potential to \$1,146M

PROJECT TITLE:	REPORTING	PERIOD:								<u> </u>	PROJECT NUMBI	ER:	
Spallation Neutron Source Project				ö	tober 01, 2003	through Octobe	ir 31, 2003					99-E-334	
											START DATE:		
PARTICIPANT NAME AND ADDRESS:	BCWS PLAN	DATE:										October 1998	
Oak Ridge National Laboratory					õ	tober 2003				<u> </u>	COMPLETION DA	ATE:	
Oak Ridge, TN												June 2006	
		CUF	RENT PERIC	Q			CUN	IULATIVE TO D	АТЕ		AT	COMPLETION	
ITEM	BUDGET	ED COST	ACTUAL COST	VARI	ANCE	BUDGETI	ED COST	ACTUAL COST	VARIA	NCE			
	WORK	WORK	WORK			WORK	WORK	WORK			BUDGET	ESTIMATE	
	SCHED	PERF	PERF	SCHED	COST	SCHED	PERF	PERF	SCHED	COST	(BAC)	(EAC)	/ARIANCE
1.02 Project Support	774.1	774.1	504.2	0.0	269.9	59,857.8	59,857.8	58,974.7	0.0	883.2	75,603	75,863	-260
1.03 Front End Systems	0.0	0.0	43.2	0.0	(43.2)	20,832.0	20,832.0	20,798.7	0.0	33.3	20,832	20,832	0
1.04 Linac Systems	(125.7)	4,579.0	4,275.0	4,704.7	304.1	262,304.2	258,969.8	262,270.4	(3,334.4)	(3,300.7)	313,212	314,597	-1,385
1.05 Ring & Transfer System	1,471.6	2,158.4	2,142.5	686.8	15.9	105,554.7	104,260.8	101,574.7	(1,293.9)	2,686.1	141,245	142,140	-895
1.06 Target Systems	4,161.3	2,614.6	2,508.1	(1,546.7)	106.5	70,245.8	65,607.3	65,023.8	(4,638.6)	583.5	106,528	108,108	-1,580
1.07 Instrument Systems	843.6	532.5	459.7	(311.1)	72.8	32,057.4	31,746.3	31,673.5	(311.1)	72.8	63,321	63,321	0
1.08 Conventional Facilities	8,678.7	5,237.6	5,383.4	(3,441.1)	(145.8)	291,686.0	289,223.9	285,304.0	(2,462.1)	3,920.0	367,540	376,930	-9,390
1.09 Integrated Control Systems	1,321.4	805.2	697.0	(516.2)	108.2	36,756.2	35,962.7	35,839.5	(793.5)	123.2	59,632	59,632	0
LINE ITEM SUBTOTAL	17,125.0	16,701.4	16,013.1	(423.6)	688.4	879,294.1	866,460.6	861,459.3	(12,833.6)	5,001.4	1,147,913	1,161,423	-13,510
CONTINGENCY											44,787	31,277	13,510
TOTAL LINE ITEM	17,125.0	16,701.4	16,013.1	(423.6)	688.4	879,294.1	866,460.6	861,459.3	(12,833.6)	5,001.4	1,192,700	1,192,700	0
1.01 Become 8 Becchamort	1 20 1	1 201	115.1	(4.4.7)	10 00/	00 445 4	9 222 00	00 577 4	(11 0)	10 00/	101 074	101 074	
	1.000	0.021	140.4	(1.1.1)	(0.02)	30,440.4	30,433.0	4. 120,00	(0.11)	(0.05)	101,074	101,074	0 0
1.10 Operations	1,622.4	1,608.9	887.4	(13.5)	G.121	35,155.4	34,725.4	33, 129.2	(4:30.0)	996.1	117,126	117,126	0
OTHER PROJECT COSTS SUBTOTAL	1,760.5	1,735.4	1,033.8	(25.2)	701.5	133,600.8	133,159.0	132,256.6	(441.8)	902.3	219,000	219,000	0
	1 100 01	0.007.07	0070 17	10 07 7	0,000	01000101			140.021 41	1000		001 777 7	
	18,885.5	18,436.8	17,046.9	(448.8)	1,389.9	1,012,894.9	999,619.6	993,715.9	(13,275.4)	5,903.7	1,411,700	1,411,700	0
				RECON	ICILIATION TC	CONTRACT E	UDGET BASE						
DOLLARS	EXPRESSE	NIN: Thouse	spu						DATE: Noven	nber 24. 2003			

CPR Format 1

r vis peparentent of Literay matchaboratory pro

CPR Format 2

PROJECT TITLE:	REPORTING P	ERIOD:								<u>a</u>	ROJECT NUMB	ER:	
Spallation Neutron Source Project				Octot	per 01, 2003 thro	ugh October 31, 20	03					99-E-334	
										S	TART DATE:		
PARTICIPANT NAME AND ADDRESS:	BCWS PLAN D	ATE:										October 1998	
Oak Ridge National Laboratory					Octobe	r 2003				0	OMPLETION D	ATE:	
Oak Ridge, TN												June 2006	
		c	URRENT PERIO	Q			CUMUL/	VTIVE TO DATE			AT	COMPLETION	
	BUDGET	ED COST	ACTUAL	VARIA	ANCE	BUDGETE	D COST	ACTUAL	VARIAI	NCE			
ITEM			COST					COST					
	WORK	WORK	WORK			WORK	WORK	WORK				ESTIMATE	
	SCHED	PERF	PERF	SCHED	COST	SCHED	PERF	PERF	SCHED	COST	BUDGET	(EAC)	VARIANCE
AE/CM/ORNL (1.8)	8,678.7	5,237.6	5,383.4	-3,441.2	-145.8	291,686.0	289,223.9	285,304.0	-2,462.1	3,920.0	367,540	376,930	(9,390)
Argonne National Laboratory	0.0	0.0	0.0	0.0	0.0	44,382.1	44,382.1	44,382.1	0.0	0.0	44,382	44,382	0
Brookhaven National Laboratory	1,281.6	1,512.4	1,737.0	230.8	-224.5	104,594.3	102,286.6	99,465.0	-2,307.6	2,821.6	128,710	128,905	(195)
Thomas Jefferson Laboratory	883.4	550.5	715.7	-332.8	-165.2	59,897.3	58,748.2	61,047.5	-1,149.1	-2,299.3	66,044	67,199	(1,155)
Los Alamos National Laboratory	-2,306.8	2,917.9	2,567.9	5,224.7	350.0	177,296.9	176,256.5	176,855.1	-1,040.4	-598.5	198,088	198,088	0
Lawrence Berkeley National Laboratory	69.2	18.1	58.7	-51.1	-40.6	28,330.6	28,177.0	28,081.1	-153.6	95.9	29,663	29,663	0
Oak Ridge National Laboratory	10,279.5	8,200.2	6,584.3	-2,079.3	1,616.0	306,707.8	300,545.2	298,581.1	-6.2	2.0	532,485	535,255	(2,770)
WBS SUBTOTAL	18,885.6	18,436.7	17,046.9	(448.9)	1,389.8	1,012,895.0	999,619.6	993,715.9	(7,119.0)	3,941.6	1,366,913	1,380,423	(13,510)
CONTINGENCY											44,787	31,277	13,510
TOTAL PROJECT COST	18,885.6	18,436.7	17,046.9	(448.9)	1,389.8	1,012,895.0	999,619.6	993,715.9	(7,119.0)	3,941.6	1,411,700	1,411,700	0
				RECON	CILIATION TO C	ONTRACT BUDGE	ET BASE						
		SCED IN: The						TAG	- November	COOC 1C -			

		Properly Load Procurement Activities	IS-04-001	R456
	(150)	Implement 1.4.5.2 Diagnostics ETC	LI-04-003	R455
	-	Revise CCL Schedule Baseline	LI-04-005	R454
	150	Revise DTL Cost and Schedule Baseline	LI-04-004	R453
	•	Implement results of LANL RF ETC	LI-03-014	R452
276	-	Transfer Diagnostics Budget for APP Actuators	LI-04-002	R451
Amount	Impact (\$K)	Description	PCR Number	Revision
Transfer	PCR Cost			

PROJECT TITLE:	REPORTING P	ERIOD:										PROJECT N	JUMBER:			
Spallation Neutron Source Project				Octob	er 01, 2003	through Octo	ober 31, 200	33						99-E-334		
												START DAT	Ш			
PARTICIPANT NAME AND ADDRESS:	BCWS PLAN D	ATE:												October 199	98	
Oak Ridge National Laboratory					Ő	ober 2003						COMPLETIC	ON DATE:			
Oak Ridge, TN														June 2006	\$	
						BUDGETE	ED COST FC	DR WORK S	CHEDULED	(NON - CU	MULATIVE					
							FISCAL	YEAR								
ITEM	BCWS CUM TO DATE	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	nn	Jul	Aug	Sep	FY Total	Out Years	Budget at Completion
PM RASELINE (REGINNING OF PERIOD)	862 169	23 755	18 636	18 017	22 523	16.673	18 810 18 810	16 123	12 437	19 449	11 524	12 303	10 890	202 139	83 604	. 147 912
1.02 Project Support									i '	- 						
1.03 Front End Systems		'	'	'		'	1		'	'		'				
1.04 Linac Systems		(6,100)	1,416	160	567	668	069	466	716	475	358	441	604	461	(460)	1
1.05 Ring & Transfer System		-	-		-	-			-	-			-	-		
1.06 Target Systems																
1.07 Instrument Systems		(230)	(62)	(115)	(192)	78	166	76	(210)	(209)	(170)	(219)	58	(1,330)	1,330	
1.08 Conventional Facilities		-				-			-					-		
1.09 Integrated Control Systems		-	-	•	-	-			-	-				-	-	
TOTAL AUTHORIZED CHANGES		(6,630)	1,354	45	375	746	857	542	506	266	187	221	662	(869)	870	1
PM BASELINE (END OF PERIOD)	862,169	17,125	19,989	18,962	22,898	17,420	19,676	16,665	12,943	19,715	11,712	12,614	11,552	201,270	84,474	1,147,913
					RECONCILI	ATION TO (CONTRACT	BUDGET B	ASE							
DOLLARS E	EXPRESSED II	V: Thous	ands							DATE:	Novembe	er 24. 2003				

Actual Cost of Work Performed (ACWP)—Actual cost incurred as reported through laboratory cost accounting systems plus any accruals.

Allocated Budget Authority (BA)—Cumulative funds currently allocated and authorized by the Department of Energy that may be committed and spent by the contractor for project activities.

Budget at Completion (BAC) —The sum of all budgets allocated to the project excluding contingency

Budget to Complete (BTC) —The sum of all budgets allocated to the project less commitments and cumulative actual costs.

Budgeted Cost of Work Performed (BCWP)—Value of the planned scope of work physically accomplished.

Budgeted Cost of Work Scheduled (BCWS)—Cost plan based on the budgeted value of a scope of work, time-phased based on the schedule for the scope of work.

Commitments—Funds allocated to subcontractors where the work has been authorized but not yet expensed.

Cost Performance Index—The ratio of the value of the work performed to actual cost; CPI = BCWP/ACWP. Values less than 1.0 represent "cost overrun" condition, and values greater than 1.0 represent "cost underrun" condition.

Cost Variance (CV)—Difference between the value of the physical work performed and the actual cost expended. CV = BCWP-ACWP. A negative result is unfavorable and indicates the potential for a cost overrun.

Estimate at Completion (EAC)—Forecast final cost of a scope of work based on the current ACWP plus a management assessment of the cost to complete the remaining scope of work.

Estimate to Complete (ETC)—A realistic appraisal of the cost to complete the remaining scope of work.

Forecast Budget Authority—Future time-phased plan of how the project expects remaining BA to be allocated to the project by DOE. Through the current reporting period Forecast BA will equal Allocated BA.

Line Item (LI)—Fund "type" for design, procurement, construction, fabrication, installation, and pre-operational testing of a capital facility.

Obligation Plan—Time-phased plan of how each laboratory plans to commit their Allocated BA. Labor and

Glossary

materials and supplies are typically time-phased as expended, while procurements are typically time-phased at award of contract plus award of any contract options.

Other Project Cost (OPC)—Fund "types" (Operating Expense and Capital Equipment) supporting, but not directly contributing to a LI construction project, generally include research and development and pre-operation activities.

Percent Complete—The ratio of the Earned value to the Budget at Completion. % Complete = BCWP/BAC

Percent Contingency remaining—The ratio of remaining contingency dollars to remaining work calculated as follows. The numerator is equal to the contingency available after consideration of the EAC. The denominator is the EAC less ACWP less commitments (excluding commitment to the AECM that has not been passed through to subcontractors) and outstanding phase funded procurements.

Percent Planned—The ratio of the current plan to the budget at completion. % Planned = BCWS/BAC

Schedule Performance Index—The ratio of the value of the work performed to work scheduled; SPI = BCWP/ BCWS. Values less than 1.0 represent "behind schedule" condition, and values greater than 1.0 represent "ahead of schedule" condition.

Schedule Variance (SV)—Difference between the value of the physical work performed and the value of the work planned (scheduled). SV = BCWP-BCWS. A negative result is unfavorable and indicates a behind schedule condition.

Total Estimated Cost (TEC)—The TEC represents the total capital funds authorized for the project including contingency funds.

Total Project Cost (TPC) — TEC + OPC