DOEGenomes.org
Human Genome Project Information  Genomics:GTL  Microbial Genome Program  home
-
HGP Home
Human Genome News Archive Edition

  Vol.10, No.1-2   February 1999
Available in PDF 
 
In this issue... 

Genome Project 
U.S. HGP on Fast Track 
DOE Joint Genome Institute Exceeds Goal 
New 5-Year Goals 
Faster Sequencing with BACs 
Mapping with STCs and STSs 
Availability of BAC Clones and STC Data 
BAC Related Websites 
BAC Resource Success Story 
Scientists Hunt SNPs for Variation, Disease 
Who's Sequencing the Human Genome? 
Genomics Progress in Science 
EMSL Promotes Remote Access to Instrumentation 
Second Private-Sector Sequencing Project 
GeneMap'98 

In the News 
Team Delivers C. elegans Sequence 
Why Sequence Entire Genomes? Worm's Eye View 
Embnet.news on Web 
European Biotech Program 
DOE BER Research Update 
Hollaender Fellows Named 
SBIR 1998 Human Genome Awards Announced 
Mouse Resources 
Mouse Consortium for Functional Genomics 
Chlamydia Genome Analysis 
HUGO Merges Offices, Web Sites 

Microbial Genomics 
Superbug Deinococcus radiodurans 
Unfinished Microbial Genomes Searchable 
TIGR Releases Chlorobium tepidum Sequence 
DOE MGP Abstracts Online 
Microbial TV Series 
 
Ethical, Legal, and Social Issues and Educational Resources 
Cambridge ELSI Symposium 
Eric Lander, Genetics in the 21st Century 
Mark Rothstein, Genetic Privacy 
James Wilson, Gene Therapy Present & Future 
LeRoy Walters, Ethical Issues in Gene Therapy 
DNA Files on NPR, Internet 
Innovative Biotechnology Curriculum 
Short Course for Biology Teachers 
Microbial TV Series 

Proteomics 
Looking at Proteins to Understand Expression 
2-DGE:  Protein Visualization, Modification 
Tool for Protein Analysis 
TREMBL Release 6 
R&D 100 Award Goes to LANL's SOLVE 
NIH Awards Proteomics Grant to Axys 
E. coli Proteome Database 

Genetics in Medicine 
National Organization for Rare Disorders 
Translation of Genetics to Medicine: New Website 
Cancer Genetics Web Site 
HuGem Website Offers Education in New Genetics 
Calculation of Genetic Risks 2nd Edition 
New Genetics Manual Offered 
Mutation Research Genomics Online 
 
Informatics 
GDB Database Operations Restored 
In Silico Biology: Bioinformatics Journal 
Computational Methods Book Available 
Bioinformatics Guide
BioToolKit
Gene-Finding Programs at Sanger
New Sequin Version
Tandem Repeat Tool
Sequence Viewer
SmithKline Licenses Gene Logic Software 
Influenza Database at LANL 
TRANSFAC Database 
p53 Mutation Database 
TBASE at Jackson Laboratory 
Intein Database on Web 
System Identifies Polymorphisms 

Web, Other Resources, Publications 
1999 Oakland Workshop Website 
Launchpad to Human Chromosomes 
Nature Genetics Supplement 

Funding 
DOE Office of Science Grants and Contracts 
NHGRI National Service Award Fellowships 
NCI Technologies for Molecular Analysis 
NIH: Netork for Large-Scale Mouse Sequencing 
NHGRI: Genomic Technology Development 
US Genome Research Funding 

Meeting Calendars & Acronyms 
Genome and Biotechnology Meetings 
Training Courses and Workshops 
Acronyms 


HGN archives and subscriptions 
HGP Information home

"Human Gene Therapy: Present and Future"

James M. Wilson
Institute for Human Gene Therapy, University of Pennsylvania

In his presentation at the 1998 Cambridge meeting, James Wilson characterized gene therapy as a novel approach in its very early stages. Its purpose, he said, is to change the expression of some genes in an attempt to treat, cure, or ultimately prevent disease. Current gene therapy is primarily experiment based, with a few early human clinical trials under way.

Theoretically, he continued, gene therapy can be targeted to somatic (body) or germ (egg and sperm) cells. In somatic gene therapy the recipient's genome is changed, but the change is not passed along to the next generation. This form of gene therapy is contrasted with germline gene therapy, in which a goal is to pass the change on to offspring. Germline gene therapy is not being actively investigated, at least in larger animals and humans, although a lot of discussion is being conducted about its value and desirability.

Gene therapy should not be confused with cloning, which has been in the news so much in the past year, Wilson continued. Cloning, which is creating another individual with essentially the same genetic makeup, is very different from gene therapy.

Listing three scientific hurdles in gene therapy, Wilson emphasized the concept of vehicles called vectors (gene carriers) to deliver therapeutic genes to the patients' cells. Once the gene is in the cell, it needs to operate correctly. Patients' bodies may reject treatments, and, finally, there is the need to regulate gene expression. Wilson expressed optimism that many groups are making headway and cooperating to overcome all these obstacles.

Viruses have evolved a way of encapsulating and delivering their genes to human cells in a pathogenic manner. Scientists have tried to take advantage of the virus's biology and manipulate its genome to remove the disease-causing genes and insert therapeutic genes. These gene-delivery vehicles will make this field a reality, he said.

In the mid-1980s, the focus of gene therapy was entirely on treating diseases caused by such single-gene defects as hemophilia, Duchenne's muscular dystrophy, and sickle cell anemia. In the late 1980s and early 1990s, the concept of gene therapy expanded into a number of acquired diseases. When human testing of first-generation vectors began in 1990, scientists learned that the vectors didn't transfer genes efficiently and that they were not sufficiently weakened. Expression and use of the therapeutic genes did not last very long.

In 1995, Wilson continued, a public debate led to the consensus that gene therapy has value although many unanswered questions require continued basic research. As the field has matured over the last decade, it has caught the attention of the biopharmaceutical industry, which has begun to sort out its own role in gene therapy. This is critical because ultimately this industry will bring gene therapies to large patient populations.

Wilson reviewed several specific gene-therapy cases involving high cholesterol, hemophilia, and cystic fibrosis. He emphasized that the response to any therapy in a heterogeneous patient population will be quite variable.

He asked the audience to think about gene therapy, not necessarily to treat genetic disease but as an alternative way to deliver proteins. Protein therapeutics currently are manufactured by placing genes in laboratory-cultured organisms that produce the proteins coded by those genes. Examples of such manufactured proteins include insulin, growth hormone, and erythropoietin, all of which must be injected frequently into the patient.

Recent gene therapy approaches promise to avoid these repeated injections, which can be painful, impractical, and extremely expensive. One method uses a new vector called adeno-associated virus, an organism that causes no known disease and doesn't trigger patient immune response. The vector takes up residence in the cells, which then express the corrected gene to manufacture the protein. In hemophilia treatments, for example, a gene-carrying vector could be injected into a muscle, prompting the muscle cells to produce Factor IX and thus prevent bleeding. This method would end the need for injections of Factor IX --a derivative of pooled blood products and a potential source of HIV and hepatitis infection. In studies by Wilson and Kathy High (University of Pennsylvania), patients have not needed Factor IX injections for more than a year. In gene therapies such as those described above, the introduced gene is always "on" so the protein is always being expressed, possibly even in instances when it isn't needed. Wilson described a newer permutation in which the vector contains both the protein-producing gene and a type of molecular rheostat that would react to a pill to regulate gene expression. This may prove to be one of gene therapy's most useful applications as scientists begin to consider it in many other contexts, he said. Wilson's group is conducting experiments with ARIAD Pharmaceuticals to study the modulation of gene expression.

Wilson stated that only so much can be done in academia and that the biopharmaceutical industry has to embrace gene therapy and handle issues of patents, regulatory affairs, and the optimum business model. An example of a dilemma that society may be facing can be seen in the treatment of hemophilia. Infusing a patient with the replacement protein, which stops bleeding episodes but doesn't prevent them, currently costs about $80,000 a year. Why would a vector to prevent bleeding for 5 to 10 years be commercialized when it would displace such a lucrative treatment, and how would this gene therapy be delivered to the public?

Wilson concluded his presentation by outlining future milestones in the field: proof of concept in the next few years in model inherited diseases, followed by cancer and cardiovascular diseases; continued explosive activity in technological development; development of regulatory policy (with the Food and Drug Administration); and commercial development.

[James Wilson]

The Institute for Human Gene Therapy

Return toCambridge Symposium introductory article

The electronic form of the newsletter may be cited in the following style:
Human Genome Program, U.S. Department of Energy, Human Genome News (v10n1-2).

Return to Top of Page

Acronym List

Send the url of this page to a friend


To read pdf files, download the free Acrobat Reader software.

Last modified: Wednesday, October 29, 2003

Home * Contacts * Disclaimer

Base URL: www.ornl.gov/hgmis

Office of Science Site sponsored by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research, Human Genome Program